Answer:
RT = 12 units
Step-by-step explanation:
From the figure attached,
ΔSRQ is right triangle.
m∠R = 90°
An altitude has been constructed from point T to side SQ.
m∠RTQ = 90°
By applying geometric mean theorem in triangle SRQ,


x² = 16 × 9
x² = 144
x = √144
x = 12
Therefore, length of altitude RT is 12 units.
Answer:
QT = 18
Step-by-step explanation:
Aahwheheehheheheheheheheheheuww
Answer:
I assume you mean 16^(1/3) i.e. the cube root of 16
I am also assuming you mean the real cube root because, as you may know, every non-zero real number has three cube root - one real and two complex conjugates.
Since 16 = 8 x 2 and 8 = 2³ then (2³ x 2)^1/3 = (2³)^1/3 x 2^1/3 = 2 x 2^1/3
You might check that the cube root of 16 is about 2.52 which is twice the cube root of 2
Step-by-step explanation:
<span>(A) Find the approximate length of the plank. Round to the nearest tenth of a foot.
Given that the distance of the ground is 3ft.
In order to get the length of the plank,
we can use the this one.
cos 49 = ground / plank
cos 49 = 3 / plank
plank = cos 49 / 3
plank = 0.10 ft
</span><span>(b) Find the height above the ground where the plank touches the wall. Round to the nearest tenth of a foot.
</span><span>
The remaining angle is equal to
angle = 180 - (90+49)
angle = 41
Finding the height.
tan 41 = height / ground
tan 41 = height / 3
height = tan 41 / 3
height = 0.05 ft.
(A) 0.10 feet
(B) 0.05 feet</span>