Answer:
Step-by-step explain
Find the horizontal asymptote for f(x)=(3x^2-1)/(2x-1) :
A rational function will have a horizontal asymptote of y=0 if the degree of the numerator is less than the degree of the denominator. It will have a horizontal asymptote of y=a_n/b_n if the degree of the numerator is the same as the degree of the denominator (where a_n,b_n are the leading coefficients of the numerator and denominator respectively when both are in standard form.)
If a rational function has a numerator of greater degree than the denominator, there will be no horizontal asymptote. However, if the degrees are 1 apart, there will be an oblique (slant) asymptote.
For the given function, there is no horizontal asymptote.
We can find the slant asymptote by using long division:
(3x^2-1)/(2x-1)=(2x-1)(3/2x+3/4-(1/4)/(2x-1))
The slant asymptote is y=3/2x+3/4
Easy peasy
slope=(change in rise)/(change in run)
aka
slope between points (x1,y1) and (x2,y2) is
slope=(y2-y1)/(x2-x1) since y is rise/up and x is run/leftright
points
(-7,-9) and (-5,-8)
x1=-7
y1=-9
x2=-5
y2=-8
remember minusing a negative means addin a positive
slope=(-8-(-9))/(-5-(-7))=
(-8+9)/(-5+7)=1/2
slope=1/2
positive slopes go from bottom left to top right
since it is less than 1
it is more horizonal than vertical
Answer:
H(10) Would be the time, in minutes the balloon spent in air . H(10) Means the balloon spent 10 minutes in air
9514 1404 393
Answer:
- relative maximum: -4
- relative (and absolute) minimum: -5
Step-by-step explanation:
The curve has a relative maximum where values on either side are lower. This looks like a peak in the curve. There is one of those on the y-axis at y = -4.
The relative maximum is -4.
__
A relative minimum is a low point, where the curve is higher on either side. There are two of these, located symmetrically about the y-axis. The minimum appears to be about y = -5. (They might be at x = ± 1, but it is hard to tell.)
The relative minima are -5.
__
A minimum or maximum is absolute if no part of the curve is lower or higher. Here, the minima are absolute, while the maximum is only relative. (The left and right branches of the curve go higher than y=-4.)
_____
Identifying the points on the curve should be the easy part. Deciding what the coordinates are can be harder when the graph is like this one.