Answer:
2nd
Step-by-step explanation:
C is the answer I pretty sure of it
Start by reviewing your knowledge of natural logarithms. If we take the ln of both sides we get e^z=ln(1). Do the same thing again and wheel about the ln(ln(1)). There's going to be complex solutions, Wolfram Alpah gets them but let me know if you figure out how to do it?
Take the vector u = <ux, uy> = <4, 3>.
Find the magnitude of u:
||u|| = sqrt[ (ux)^2 + (uy)^2]
||u|| = sqrt[ 4^2 + 3^2 ]
||u|| = sqrt[ 16 + 9 ]
||u|| = sqrt[ 25 ]
||u|| = 5
To find the unit vector in the direction of u, and also with the same sign, just divide each coordinate of u by ||u||. So the vector you are looking for is
u/||u||
u * (1/||u||)
= <4, 3> * (1/5)
= <4/5, 3/5>
and there it is.
Writing it in component form:
= (4/5) * i + (3/5) * j
I hope this helps. =)