1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elenna [48]
3 years ago
15

Let X and Y be discrete random variables. Let E[X] and var[X] be the expected value and variance, respectively, of a random vari

able X. (a) Show that E[X + Y ] = E[X] + E[Y ]. (b) If X and Y are independent, show that var[X + Y ] = var[X] + var[Y ].
Mathematics
1 answer:
Ulleksa [173]3 years ago
7 0

Answer:

(a)E[X+Y]=E[X]+E[Y]

(b)Var(X+Y)=Var(X)+Var(Y)

Step-by-step explanation:

Let X and Y be discrete random variables and E(X) and Var(X) are the Expected Values and Variance of X respectively.

(a)We want to show that E[X + Y ] = E[X] + E[Y ].

When we have two random variables instead of one, we consider their joint distribution function.

For a function f(X,Y) of discrete variables X and Y, we can define

E[f(X,Y)]=\sum_{x,y}f(x,y)\cdot P(X=x, Y=y).

Since f(X,Y)=X+Y

E[X+Y]=\sum_{x,y}(x+y)P(X=x,Y=y)\\=\sum_{x,y}xP(X=x,Y=y)+\sum_{x,y}yP(X=x,Y=y).

Let us look at the first of these sums.

\sum_{x,y}xP(X=x,Y=y)\\=\sum_{x}x\sum_{y}P(X=x,Y=y)\\\text{Taking Marginal distribution of x}\\=\sum_{x}xP(X=x)=E[X].

Similarly,

\sum_{x,y}yP(X=x,Y=y)\\=\sum_{y}y\sum_{x}P(X=x,Y=y)\\\text{Taking Marginal distribution of y}\\=\sum_{y}yP(Y=y)=E[Y].

Combining these two gives the formula:

\sum_{x,y}xP(X=x,Y=y)+\sum_{x,y}yP(X=x,Y=y) =E(X)+E(Y)

Therefore:

E[X+Y]=E[X]+E[Y] \text{  as required.}

(b)We  want to show that if X and Y are independent random variables, then:

Var(X+Y)=Var(X)+Var(Y)

By definition of Variance, we have that:

Var(X+Y)=E(X+Y-E[X+Y]^2)

=E[(X-\mu_X  +Y- \mu_Y)^2]\\=E[(X-\mu_X)^2  +(Y- \mu_Y)^2+2(X-\mu_X)(Y- \mu_Y)]\\$Since we have shown that expectation is linear$\\=E(X-\mu_X)^2  +E(Y- \mu_Y)^2+2E(X-\mu_X)(Y- \mu_Y)]\\=E[(X-E(X)]^2  +E[Y- E(Y)]^2+2Cov (X,Y)

Since X and Y are independent, Cov(X,Y)=0

=Var(X)+Var(Y)

Therefore as required:

Var(X+Y)=Var(X)+Var(Y)

You might be interested in
Population Growth A lake is stocked with 500 fish, and their population increases according to the logistic curve where t is mea
Alexus [3.1K]

Answer:

a) Figure attached

b) For this case we just need to see what is the value of the function when x tnd to infinity. As we can see in our original function if x goes to infinity out function tend to 1000 and thats our limiting size.

c) p'(t) =\frac{19000 e^{-\frac{t}{5}}}{5 (1+19e^{-\frac{t}{5}})^2}

And if we find the derivate when t=1 we got this:

p'(t=1) =\frac{38000 e^{-\frac{1}{5}}}{(1+19e^{-\frac{1}{5}})^2}=113.506 \approx 114

And if we replace t=10 we got:

p'(t=10) =\frac{38000 e^{-\frac{10}{5}}}{(1+19e^{-\frac{10}{5}})^2}=403.204 \approx 404

d) 0 = \frac{7600 e^{-\frac{t}{5}} (19e^{-\frac{t}{5}} -1)}{(1+19e^{-\frac{t}{5}})^3}

And then:

0 = 7600 e^{-\frac{t}{5}} (19e^{-\frac{t}{5}} -1)

0 =19e^{-\frac{t}{5}} -1

ln(\frac{1}{19}) = -\frac{t}{5}

t = -5 ln (\frac{1}{19}) =14.722

Step-by-step explanation:

Assuming this complete problem: "A lake is stocked with 500 fish, and the population increases according to the logistic curve p(t) = 10000 / 1 + 19e^-t/5 where t is measured in months. (a) Use a graphing utility to graph the function. (b) What is the limiting size of the fish population? (c) At what rates is the fish population changing at the end of 1 month and at the end of 10 months? (d) After how many months is the population increasing most rapidly?"

Solution to the problem

We have the following function

P(t)=\frac{10000}{1 +19e^{-\frac{t}{5}}}

(a) Use a graphing utility to graph the function.

If we use desmos we got the figure attached.

(b) What is the limiting size of the fish population?

For this case we just need to see what is the value of the function when x tnd to infinity. As we can see in our original function if x goes to infinity out function tend to 1000 and thats our limiting size.

(c) At what rates is the fish population changing at the end of 1 month and at the end of 10 months?

For this case we need to calculate the derivate of the function. And we need to use the derivate of a quotient and we got this:

p'(t) = \frac{0 - 10000 *(-\frac{19}{5}) e^{-\frac{t}{5}}}{(1+e^{-\frac{t}{5}})^2}

And if we simplify we got this:

p'(t) =\frac{19000 e^{-\frac{t}{5}}}{5 (1+19e^{-\frac{t}{5}})^2}

And if we simplify we got:

p'(t) =\frac{38000 e^{-\frac{t}{5}}}{(1+19e^{-\frac{t}{5}})^2}

And if we find the derivate when t=1 we got this:

p'(t=1) =\frac{38000 e^{-\frac{1}{5}}}{(1+19e^{-\frac{1}{5}})^2}=113.506 \approx 114

And if we replace t=10 we got:

p'(t=10) =\frac{38000 e^{-\frac{10}{5}}}{(1+19e^{-\frac{10}{5}})^2}=403.204 \approx 404

(d) After how many months is the population increasing most rapidly?

For this case we need to find the second derivate, set equal to 0 and then solve for t. The second derivate is given by:

p''(t) = \frac{7600 e^{-\frac{t}{5}} (19e^{-\frac{t}{5}} -1)}{(1+19e^{-\frac{t}{5}})^3}

And if we set equal to 0 we got:

0 = \frac{7600 e^{-\frac{t}{5}} (19e^{-\frac{t}{5}} -1)}{(1+19e^{-\frac{t}{5}})^3}

And then:

0 = 7600 e^{-\frac{t}{5}} (19e^{-\frac{t}{5}} -1)

0 =19e^{-\frac{t}{5}} -1

ln(\frac{1}{19}) = -\frac{t}{5}

t = -5 ln (\frac{1}{19}) =14.722

7 0
3 years ago
Question:
prohojiy [21]
Let f(x) = p(x)/q(x), where p and q are polynomials and reduced to lowest terms. (If p and q have a common factor, then they contribute removable discontinuities ('holes').) 
Write this in cases: 
(i) If deg p(x) ≤ deg q(x), then f(x) is a proper rational function, and lim(x→ ±∞) f(x) = constant. 
If deg p(x) < deg q(x), then these limits equal 0, thus yielding the horizontal asymptote y = 0. 
If deg p(x) = deg q(x), then these limits equal a/b, where a and b are the leading coefficients of p(x) and q(x), respectively. Hence, we have the horizontal asymptote y = a/b. 
Note that there are no obliques asymptotes in this case. ------------- (ii) If deg p(x) > deg q(x), then f(x) is an improper rational function. 
By long division, we can write f(x) = g(x) + r(x)/q(x), where g(x) and r(x) are polynomials and deg r(x) < deg q(x). 
As in (i), note that lim(x→ ±∞) [f(x) - g(x)] = lim(x→ ±∞) r(x)/q(x) = 0. Hence, y = g(x) is an asymptote. (In particular, if deg g(x) = 1, then this is an oblique asymptote.) 
This time, note that there are no horizontal asymptotes. ------------------ In summary, the degrees of p(x) and q(x) control which kind of asymptote we have. 
I hope this helps!
4 0
3 years ago
Colin invest in £5000 into his bank account. He receives 10% per year simple interest. How much will Colin have after 3 years?
pav-90 [236]

Answer:

£6655

Step-by-step explanation:

Given data

Principal=  £5000

Rate= 10%

Time = 3 years

FInal Amount A=???

The expression for the compound interest is given as

A=P(1+r)^t

substitute

A=5000(1+0.1)^3

A=5000(1.1)^3

A=5000*1.331

A= £6655

Hence the final Amount is  £6655

5 0
3 years ago
Complete the following equation using &lt;,&gt;, or = 7___24/4
olga2289 [7]

Answer:

<

Step-by-step explanation:

Have a Great Day!!!

8 0
3 years ago
If 3a + b + c = -3, a+3b+c = 9, a+b+3c = 19 find a*b*c
VashaNatasha [74]

Answer:

a=-4

b=2

c=7

so therefore a*b*c=-4*2*7

5 0
3 years ago
Other questions:
  • A catering company uses different functions to estimate the itemized costs for a party. The table below represents the included
    11·2 answers
  • Can a repeating decimal can be written as an integer?
    8·2 answers
  • What is the reciprical of 200 and 450​
    9·1 answer
  • 9) Write an equation of the line that passes through the point (4, –5) with slope 2.
    13·1 answer
  • Zx and Zy are supplemmentary angles. Zy measures 156 degree <br> what is the measure of Zx?
    9·1 answer
  • 2x+y=7 however im looking for y <br> please help out with this T_T
    10·1 answer
  • Factor the following quadratic expression n^2+ 4n-12
    12·1 answer
  • Exsplain how to use a number line to show that opposite quantities combine to make 0.
    10·1 answer
  • One factor of f (x ) = 4 x cubed minus 4 x squared minus 16 x + 16 is (x – 2). What are all the roots of the function? Use the R
    5·1 answer
  • 4. 6x³ - 4x² +7 or 7x³ - 6x² + 4 for x = 3
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!