Answer:
1) The linear regression model is y = -0.0348·x + 13.989
2) The correlation coefficient is -0.0725
3) The strength of the model is strong - association
Step-by-step explanation:
1)
X Y XY X²
27 13 351 729
65 12 780 4225
83 11 913 6889
109 10 1090 11881
142 9 1278 20164
175 8 1400 30625
∑ 601 63 5812 74513
From y = ax + b, we have

b = 1/n(∑y -a∑x) = 1/6(63 - (0.0348)×601) = 13.989
Therefore, the linear regression model is y = -0.0348·x + 13.989
2)
![r = \frac{n\sum xy - \sum x\sum y }{\sqrt{[n\sum x^{2}-\left (\sum x \right )^{2}] [n\sum y^{2}-\left (\sum y \right )^{2}]}} = \frac{6 \times 5812 - 601 \times 63}{\sqrt{[6 \times 74513-601^{2}] [6 \times 3969 - 63^2]} } = - 0.0725](https://tex.z-dn.net/?f=r%20%3D%20%5Cfrac%7Bn%5Csum%20xy%20-%20%5Csum%20x%5Csum%20y%20%7D%7B%5Csqrt%7B%5Bn%5Csum%20x%5E%7B2%7D-%5Cleft%20%28%5Csum%20x%20%20%5Cright%20%29%5E%7B2%7D%5D%20%5Bn%5Csum%20y%5E%7B2%7D-%5Cleft%20%28%5Csum%20y%20%20%5Cright%20%29%5E%7B2%7D%5D%7D%7D%20%20%3D%20%5Cfrac%7B6%20%5Ctimes%205812%20%20-%20601%20%5Ctimes%2063%7D%7B%5Csqrt%7B%5B6%20%5Ctimes%2074513-601%5E%7B2%7D%5D%20%5B6%20%20%5Ctimes%203969%20-%2063%5E2%5D%7D%20%7D%20%3D%20-%200.0725)
3) The strength is - association.
Answer:
Ejemplos de funciones polinómicas son: , la cual es de grado 3, ya que el exponente mayor es 3. , que es una función polinómica de grado 2, o sea cuadrática, cuya gráfica es una parábola. ... Muchas veces a partir de la gráfica de un polinomio se puede deducir la ecuación de la función.
Step-by-step explanation:
we can divide the composite shape into on quadrilateral and triangle as shown in the diagram. since the line that joins the two shape is parallel to the base AB, the angle DEC is 85°.The angle CEA is 180°- angle DEC = 180-85=95. Angle BCE is sum of angle CEA, ABC and EAB subtracted from360°= 360°-(95+95+85)=85°. Angle DCE is 120°- ECB=35°. So, angle CDE = 180°-(35°+85°)= 60°. For reference see the diagram.
Answer:
aₙ = 1/2 x aₙ₋₁ n≥2
Step-by-step explanation:
aₙ = 1/2 x aₙ₋₁ n≥2
a₁ = 64
a₂ = 1/2 x 64 = 32
a₃ = 1/2 x 32 = 16