Answer:
d = 
Step-by-step explanation:
Given that W varies jointly as L and d² then the equation relating them is
W = kLd² ← k is the constant of variation
To find k use the condition W = 140 when d = 4 and L = 54, thus
140 = k × 54 × 4² = 864k ( divide both sides by 864 )
= k , that is
k = 
W =
Ld² ← equation of variation
Multiply both sides by 216
216W = 35Ld² ( divide both sides by 35L )
= d² ( take the square root of both sides )
d = 
(15-9)*5= 30
The answer is 30
The two points are (-4, -2) and (4, 5) and the equation of the line is 8y = 7x + 12 passing through the two points.
<h3>What is geometric transformation?</h3>
It is defined as the change in coordinates and the shape of the geometrical body. It is also referred to as a two-dimensional transformation. In the geometric transformation, changes in the geometry can be possible by rotation, translation, reflection, and glide translation.
We have a quadrilateral ABCD which is reflected over a line and formed a mirror image A'B'C'D' of the quadrilateral.
From the graph:
The two points are (-4, -2) and (4, 5)
The line equation passing through two points:
[y - 5] = (5+2)/(4+4)[x - 4]
y - 5 = 7/8[x - 4]
8y - 40 = 7x - 28
8y = 7x + 12
Thus, the two points are (-4, -2) and (4, 5) and the equation of the line is 8y = 7x + 12 passing through the two points.
Learn more about the geometric transformation here:
brainly.com/question/16156895
#SPJ1
Answer:
3
Step-by-step explanation: