Trapezoid because a trapezoid is a quaderateral with 4 sides
Answer:
Maximum error for viscosity is 17.14%
Step-by-step explanation:
We know that everything is changing with respect to the time, "r" is changing with respect to the time, and also "p" just "v" will not change with the time according to the information given, so we can find the implicit derivative with respect to the time, and since

The implicit derivative with respect to the time would be

If we multiply everything by dt we get

Remember that the error is given by
therefore doing some algebra we get that

Since, r = 0.006 , dr = 0.00025 , p = 4*105 , dp = 2000 we get that

Which means that the maximum error for viscosity is 17.14%.
Do you want it to multiply. O que ?
Answer:
3
Step-by-step explanation: