Answer:
150%
Step-by-step explanation:
All three series converge, so the answer is D.
The common ratios for each sequence are (I) -1/9, (II) -1/10, and (III) -1/3.
Consider a geometric sequence with the first term <em>a</em> and common ratio |<em>r</em>| < 1. Then the <em>n</em>-th partial sum (the sum of the first <em>n</em> terms) of the sequence is

Multiply both sides by <em>r</em> :

Subtract the latter sum from the first, which eliminates all but the first and last terms:

Solve for
:

Then as gets arbitrarily large, the term
will converge to 0, leaving us with

So the given series converge to
(I) -243/(1 + 1/9) = -2187/10
(II) -1.1/(1 + 1/10) = -1
(III) 27/(1 + 1/3) = 18
The equation of the parabolas given will be found as follows:
a] general form of the parabolas is:
y=k(ax^2+bx+c)
taking to points form the first graph say (2,-2) (3,2), thus
y=k(x-2)(x-3)
y=k(x^2-5x+6)
taking another point (-1,5)
5=k((-1)^2-5(-1)+6)
5=k(1+5+6)
5=12k
k=5/12
thus the equation will be:
y=5/12(x^2-5x+6)
b] Using the vertex form of the quadratic equations:
y=a(x-h)^2+k
where (h,k) is the vertex
from the graph, the vertex is hence: (-2,1)
thus the equation will be:
y=a(x+2)^2+1
taking the point say (0,3) and solving for a
3=a(0+2)^2+1
3=4a+1
a=1/2
hence the equation will be:
y=1/2(x+2)^2+1
The answer appears to be 2 dollars for 3 pounds because the pattern seems like 2,4,6