Answer:
b. Even though the DNA sequence changed, the sequence still codes for the same amino acid, so no change in phenotype will occur.
Explanation:
There is redundancy in the genetic code. That means that different codons can code for the same amino acids, so some mutations do not change the amino acid sequence of the protein.
Here, the amino acid is unchanged with the mutation.
If the amino acid sequence of the protein is the same, then the protein is not changed, so there will be no change in the phenotype
The answer is D bro ponte pila
Answer:
A. The bacteria could no longer regenerate the NAD+ needed for glycolysis, so it would stop producing ATP.
Explanation:
According to the given information in this question, Lactobacillus acidophilus is a bacterium species that uses the lactic acid fermentation when there is no oxygen in its cell i.e. under anaerobic conditions. This means that it converts glucose to lactic acid during this anaerobic respiration process.
However, if the lactic acid fermentation pathway were blocked under an anaerobic condition, this means that it will be no longer be able to perform respiration and hence stop production of ATP. This is because the bacteria will no longer regenerate the NAD+ (electron acceptor) needed for glycolysis, so it would stop producing ATP. Note that, all living organisms, whether aerobic or anaerobic, undergo GLYCOLYSIS, which is the first stage of cellular respiration.
Glycolysis is the breakdown of glucose where the final product is pyruvate, glycogenesis is the process of formation of glycogen and the product in first step is glucose-1-phosphate. Glycogenolysis is the process in which the initial reactant is glycogen, and gluconeogenesis is the formation of glucose from pyruvate.
<h3>What is glycogen?</h3>
Glycogen is a type of carbohydrate that is stored in the liver and gets converted into glucose in emergency situations.
It is formed by the process of glycogenesis and the first-step product is glucose-1-phosphate.
Glycolysis is the breakdown of glucose where the final product is pyruvate.
Glycogenolysis is the process in which have initial reactant glycogen and occurs when brain and muscle require immediate energy.
Gluconeogenesis is the formation of glucose from pyruvate.
Thus, these were the explanation for glycolysis, glycogenesis, glycogenolysis and gluconeogenesis.
For more details regarding glycolysis, visit:
brainly.com/question/14076989
#SPJ4