1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timama [110]
4 years ago
12

-1 3/5 divided by -2/3

Mathematics
2 answers:
Cloud [144]4 years ago
7 0
<h2>Answer:</h2>

12/5

alternative forms:

2 2/5, or 2.4

<h2>Step-by-step explanation:</h2>

-1 3/5÷ -2/3

convert mixed number to an improper fraction

-8/5÷ -2/3

divide

8/5•3/2

reduce numbers

4/5•3

multiply

---------

12/5

---------

vova2212 [387]4 years ago
4 0

Answer:-3.9

Step-by-step explanation:

-13/5 /  -2/3

-13/5 *  3/2

-39/10

-3.9

You might be interested in
Find the length of one of the legs of the triangle
CaHeK987 [17]
The 1 st corner is 90*
5 0
3 years ago
Read 2 more answers
Area of the bounded curves y=x^2, y=√(7+x)
N76 [4]

Answer:

\displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \left \{ {{y = x^2} \atop {y = \sqrt{7 + x}}} \right.

<u>Step 2: Identify</u>

<em>Graph the systems of equations - see attachment.</em>

Top Function:  \displaystyle y = \sqrt{7 + x}

Bottom Function:  \displaystyle y = x^2

Bounds of Integration: [-1.529, 1.718]

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute in variables [Area of a Region Formula]:                                   \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \int\limits^{1.718}_{-1.529} {x^2} \, dx
  3. [Right Integral] Integration Rule [Reverse Power Rule]:                             \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \frac{x^3}{3} \bigg| \limits^{1.718}_{-1.529}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - 2.88176

<u>Step 4: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 7 + x
  2. [<em>u</em>] Basic Power Rule [Derivative Rule - Addition/Subtraction]:                 \displaystyle du = dx
  3. [Limits] Switch:                                                                                               \displaystyle \left \{ {{x = 1.718 ,\ u = 7 + 1.718 = 8.718} \atop {x = -1.529 ,\ u = 7 - 1.529 = 5.471}} \right.

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] U-Substitution:                                                                               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{8.718}_{5.471} {\sqrt{u}} \, du - 2.88176
  2. [Integral] Integration Rule [Reverse Power Rule]:                                       \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = \frac{2x^\Big{\frac{3}{2}}}{3} \bigg| \limits^{8.718}_{5.471} - 2.88176
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 8.62949 - 2.88176
  4. Simplify:                                                                                                         \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

5 0
3 years ago
Help please!! Thank you!
anygoal [31]

Answer:

S

Step-by-step explanation:

The vertex is S. The angle can only be measured from point S.

8 0
3 years ago
Read 2 more answers
Can i get a list of prime numbers
bija089 [108]

well prime numbers are noting but whole number greater than 1 whose only factors are 1 and itself.

soo....the first few prime numbers are :

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149 etc.

and if u c .... all the numbers dont come in any other table rather that one and itself


5 0
3 years ago
I need help on this qustion
erastova [34]

what I put into my basic calculator is 5(3/4)-6(1/8)= 3 ft


3 0
3 years ago
Other questions:
  • What are the solutions of the equation x^4-9x^2+8=0? Use u substitution to solve
    13·2 answers
  • Function (A or B) has the greater initial value because the initial value for function A is _ and the initial value for Function
    6·1 answer
  • 3a^4(2b^6c^3)^2<br> Can someone help me simplify this?
    6·1 answer
  • You have recorded your car mileage and gasoline use for 5 weeks Estimate the
    14·2 answers
  • Write 6-(5x+2)+8y=x- (2y+3) in two forms
    7·1 answer
  • quadrilateral A'B'C'D' is the image of quadrilateral ABCD after being translated 6 units up and 7 units left. Quadrilateral A pr
    9·2 answers
  • The mass of a carbon atom is 1.994 × 10-23 grams. The mass of a hydrogen atom is 1.67 × 10-24 grams. What is the difference of t
    13·1 answer
  • What is the correct meaning of the word collided?
    10·2 answers
  • A = 1/2 h(b^1 + b^2) solve for b^2
    11·1 answer
  • What number is represented by the question mark?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!