Answer:
<em><u>First</u></em><em><u> </u></em><em><u>Column</u></em><em><u> </u></em><em><u>top</u></em><em><u>:</u></em>
5. 3. 10
<em><u>Second</u></em><em><u> </u></em><em><u>Column</u></em><em><u> </u></em><em><u>middle</u></em><em><u>:</u></em>
9. 7. 2
<em><u>Third</u></em><em><u> </u></em><em><u>Column</u></em><em><u> </u></em><em><u>bottom</u></em><em><u>:</u></em>
4. 8. 6
<em><u>Hence</u></em><em><u>,</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>grid</u></em><em><u> </u></em><em><u>would</u></em><em><u> </u></em><em><u>be</u></em><em><u>,</u></em>
5. 3. 10
9. 7. 2
4. 8. 6
Of 3.............................................
Answer:

b = (T - a - c - d) / 3
Step-by-step explanation:
Let T be the total number of points required to advance.
a, c and d are points scored in the local matches, and b is the number of points scored in the district match. If b is worth 3 times as much as the other matches, the total number of points is given by:

Isolate b in order to find out how many points they need in the district match:

They need to score (T - a - c - d)/3, in the district match in order to win.
I think the correct answer your looking for is D) 9