Explanation:
Evolution involves changing the hereditary characteristics of a population through generations. These traits are the expression of genes that are passed on to offspring during reproduction.
Answer: Van der Waals forces
Explanation:
Van der Waals forces are weak intermolecular forces that depend on the distance between two particles. They are caused by correlations in the change in polarization between two nearby particles. To put it in other words, when a particle changes its polarization (becomes more positive on one end and more negative on the other), so does the adjacent particle, and the next one, and so on. This causes these particles to stick together weakly.
The tiny "hairs" increase the surface area of the gecko's feet in contact with the wall, which makes the bond stronger and allows it to support all of its weight.
Because experiments have shown that geckos stick well to both hydrophobic and hydrophilic surfaces, we can assume there aren't any hydrogen bonds present.
Ionic bonds can't be present either because geckos wouldn't stick to electrically neutral surfaces, as these bonds require charged molecules.
The original question has a set of choices. This is within the context of cell division. The choices are:
A. A cell in G1 of interphase and a cell in G2 of interphase
B. A cell in G1 of interphase and a cell immediately after the completion of meiosis II
C. A cell in G1 of interphase and a cell in metaphase II of meiosis
D. A cell in G2 of interphase and a cell in metaphase II of meiosis
<span>E. None of the above.
</span>
The correct answer is C. A cell in G1 is diploid and the cell in meiosis II is haploid but the amount of DNA still equivalent as each chromosome in the haploid cell consists of two chromatids. G2 cells already had been through the S phase therefore the genetic material is already doubled. A cell immediately after meiosis II has half the genetic material.