Answer:
The required vector parametric equation is given as:
r(t) = <3cost, 3sint>
For 0 ≤ t ≤ 2π
Step-by-step explanation:
Given that
f(x, y) = <2y, -sin(y)>
Since C is a cirlce centered at the origin (0, 0), with radius r = 3, it takes the form
(x - 0)² + (y - 0)² = r²
Which is
x² + y² = 9
Because
cos²β + sin²β = 1
and we want to find a vector parametric equations r(t) for the circle C that starts at the point (3, 0), we can write
x = 3cosβ
y = 3sinβ
So that
x² + y² = 3²cos²β + 3²sin²β
= 9(cos²β + sin²β) = 9
That is
x² + y² = 9
The vector parametric equation r(t) is therefore given as
r(t) = <x(t), y(t)>
= <3cost, 3sint>
For 0 ≤ t ≤ 2π
4x + y = h
Rearrange the problem so your equation equals x, not h
y - h = -4x
Divide both sides by -4
-4y - 4h = x
Cheers!
Answer:
$24,498,509.74
Step-by-step explanation:
The formula for the value as a function of time is ...
V(t) = P·e^(rt)
Filling in the numbers and doing the arithmetic, we have ...
V(35) = 3,000,000·e^(0.06·35) ≈ 24,498,509.74
Compounded continuously for 35 years, the investment will be worth $24,498,509.74.
Answer:
f(1) = 5, f(2) = 8, f(3) = 11
Step-by-step explanation:
Common difference refers to how you get from one value in the sequence to the next.
If f(0) = 2, f(1) = 2 + 3 = 5 etc
Answer:
The statement, (1- <em>α</em>)% confidence interval for (μ₁ - μ₂) does not contain zero is TRUE.
Step-by-step explanation:
The hypothesis for a test is defined as follows:
<em>H</em>₀: μ₁ = μ₂ vs. <em>H</em>ₐ: μ₁ ≠ μ₂
It is provided that the test was rejected st the significance level <em>α</em>%.
If a decision is to made using the confidence interval the conditions are:
If the null hypothesis value is not included in the (1 - <em>α</em>)% confidence interval then the null hypothesis will be rejected and vice versa.
In this case the null hypothesis value is:
<em>H</em>₀: μ₁ - μ₂ = 0.
If the value 0 is not included in the (1 - <em>α</em>)% confidence interval for the difference between two means, then the null hypothesis will be rejected.
Thus the statement, (1- <em>α</em>)% confidence interval for (μ1- μ2) does not contain zero is TRUE.