Answer:
a)
AB is on the latitude 30°N.
<u>Find AB:</u>
- AB = 2*3.142*6400*cos 30°*(32+35)/360 = 6482.15 km
BC is along longitude 35°W
<u>Find BC:</u>
- BC = 2*3.142*6400*(30 + 20)/360 = 5585.77 km
<u>Total distance traveled:</u>
- 6482.15 + 5585.77 = 12067.92 km
<u>Convert the distance to nautical miles:</u>
12067.92/1.86 = 6488.13 nautical miles
b)
<u>Find the average speed:</u>
- 6488.13/22 = 294.92 nautical miles / hour
<u>Note</u>. <em>This is unrealistically high speed for a ship, this must be a plane or the time given wrong.</em>
Hey there!
You are trying to find the perimeter of triangle ABC. Each side is 2. Since there are 3 sides on a triangle, multiply 2 by 3 to get 6. You do not need the centroid for this problem.
I hope this helps!
Answer: 0
Step-by-step explanation:
3)(x)+(3)(4)+−2=10
(3x)+(12+−2)=10
3x+10=10
3x+10−10=10−10
3x=0
3x/3 = 0/3
x=0
V(t) = dy/dt = 40 - 32t
ai). average velocity = (v(0.5) - v(0))/(0.5 - 0) = ((40 - 32(0.5)) - (40 - 32(0)))/0.5 = (40 - 16 - 40)/0.5 = -16/0.5 = -32m / s
ii). average velocity = (v(0.1) - v(0))/(0.1 - 0) = ((40 - 32(0.1)) - (40 - 32(0)))/0.1 = (40 - 3.2 - 40)/0.1 = -3.2/0.1 = -32m / s
iii). average velocity = (v(0.05) - v(0))/(0.05 - 0) = ((40 - 32(0.05)) - (40 - 32(0)))/0.05 = (40 - 1.6 - 40)/0.05 = -1.6/0.05 = -32m / s