Answer:
The standard deviation for the sample mean distribution=0.603
Step-by-step explanation:
We are given that
Mean,![\mu=63](https://tex.z-dn.net/?f=%5Cmu%3D63)
Standard deviation,![\sigma=4](https://tex.z-dn.net/?f=%5Csigma%3D4)
n=44
We have to find the standard deviation for the sample mean distribution using Central Limit Theorem for Means.
Standard deviation for the sample mean distribution
![\sigma_x=\frac{\sigma}{\sqrt{n}}](https://tex.z-dn.net/?f=%5Csigma_x%3D%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%7Bn%7D%7D)
Using the formula
![\sigma_x=\frac{4}{\sqrt{44}}](https://tex.z-dn.net/?f=%5Csigma_x%3D%5Cfrac%7B4%7D%7B%5Csqrt%7B44%7D%7D)
![\sigma_x=\frac{4}{\sqrt{2\times 2\times 11}}](https://tex.z-dn.net/?f=%5Csigma_x%3D%5Cfrac%7B4%7D%7B%5Csqrt%7B2%5Ctimes%202%5Ctimes%2011%7D%7D)
![\sigma_x=\frac{4}{2\sqrt{11}}](https://tex.z-dn.net/?f=%5Csigma_x%3D%5Cfrac%7B4%7D%7B2%5Csqrt%7B11%7D%7D)
![\sigma_x=\frac{2}{\sqrt{11}}](https://tex.z-dn.net/?f=%5Csigma_x%3D%5Cfrac%7B2%7D%7B%5Csqrt%7B11%7D%7D)
![\sigma_x=0.603](https://tex.z-dn.net/?f=%5Csigma_x%3D0.603)
Hence, the standard deviation for the sample mean distribution=0.603
It will be 1/4.
That is your answer.
Hope this helps
Answer:
-6
Step-by-step explanation:
We use PEMDAS to solve this,
so P stands for parentheses, so that's where we start.
We first, square the innermost parentheses with the exponent which is the E in PEMDAS, then then the outer parentheses
-12/3*(-8+16-6)+2
-12/3*(2)+2
Now we divide as in Division in PEMDAS.
-4*2+2
Now we multiply as in Multiplication in PEMDAS.
-8+2
Now we add as in A for Addition
-6
In PEMDAS, Multiplication doesn't always come before division, and same for addition and subtraction.
Answer:
13.08
Step-by-step explanation:
19 +13+ 15+ 6+ 17+ 21+ 16+ 18+ 11+ 10+ 11+ 16+ 20+ 6 +18 +12 +6 +20+ 13+ 13+ 7+ 20+ 14+ 21+ 11+ 3 +9 +18+12 +14+ 6 +11 +5 +18+ 8
485/35
13.08