from the diagram, we can see that the height or line perpendicular to the parallel sides is 8.5.
likewise we can see that the parallel sides or "bases" are 24.3 and 9.7, so
![\textit{area of a trapezoid}\\\\ A=\cfrac{h(a+b)}{2}~~ \begin{cases} h=height\\ a,b=\stackrel{parallel~sides}{bases}\\[-0.5em] \hrulefill\\ h=8.5\\ a=24.3\\ b=9.7 \end{cases}\implies \begin{array}{llll} A=\cfrac{8.5(24.3+9.7)}{2}\\\\ A=\cfrac{8.5(34)}{2}\implies A=144.5~in^2 \end{array}](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20trapezoid%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7Bh%28a%2Bb%29%7D%7B2%7D~~%20%5Cbegin%7Bcases%7D%20h%3Dheight%5C%5C%20a%2Cb%3D%5Cstackrel%7Bparallel~sides%7D%7Bbases%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20h%3D8.5%5C%5C%20a%3D24.3%5C%5C%20b%3D9.7%20%5Cend%7Bcases%7D%5Cimplies%20%5Cbegin%7Barray%7D%7Bllll%7D%20A%3D%5Ccfrac%7B8.5%2824.3%2B9.7%29%7D%7B2%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7B8.5%2834%29%7D%7B2%7D%5Cimplies%20A%3D144.5~in%5E2%20%5Cend%7Barray%7D)
Answer:
2 units
Step-by-step explanation:
From the sides of the coordinate vertices PQ, you count how much coordinates on a graph it takes to get to one point as length.
Answer:
x^2 - 8xy + 3y^2 - 2
Step-by-step explanation:
(-8xy + 2x^2 + 3y^2) - unknown = x^2 + 2
- unknown = x^2 + 2 + 8xy - 2x^2 - 3y^2
- unknown = -x^2 + 8xy - 3y^2 + 2
Unknown = x^2 - 8xy + 3y^2 - 2
Check:
(-8xy + 2x^2 + 3y^2) - (x^2 - 8xy + 3y^2 - 2)
= -8xy + 2x^2 + 3y^2 - x^2 + 8xy - 3y^2 + 2
= -8xy + 8xy + 2x^2 - x^2 + 3y^2 - 3y^2 + 2
= x^2 + 2
Answer:
0
Step-by-step explanation:
7x + -2z = 4 + -1xy
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add 'xy' to each side of the equation.
7x + xy + -2z = 4 + -1xy + xy
Combine like terms: -1xy + xy = 0
7x + xy + -2z = 4 + 0
7x + xy + -2z = 4
Add '2z' to each side of the equation.
7x + xy + -2z + 2z = 4 + 2z
Combine like terms: -2z + 2z = 0
7x + xy + 0 = 4 + 2z
7x + xy = 4 + 2z
Reorder the terms:
-4 + 7x + xy + -2z = 4 + 2z + -4 + -2z
Reorder the terms:
-4 + 7x + xy + -2z = 4 + -4 + 2z + -2z
Combine like terms: 4 + -4 = 0
-4 + 7x + xy + -2z = 0 + 2z + -2z
-4 + 7x + xy + -2z = 2z + -2z
Combine like terms: 2z + -2z = 0
-4 + 7x + xy + -2z = 0
Answer:
So need me to solve it?
Step-by-step explanation: