answer to the problem is x=-33\16
Answer:
s = 14m + 458
Step-by-step explanation:
current amount = 458
14 per month
s = 14m + 458
Answer:
the minimum records to be retrieved by using Chebysher - one sided inequality is 17.
Step-by-step explanation:
Let assume that n should represent the number of the students
SO,
can now be the sample mean of number of students in GPA's
To obtain n such that 
⇒ 
However ;

![E(x^2) = D\int\limits^4_2 (2+e^{-x})dx \\ \\ = \dfrac{D}{3}[e^{-4} (2e^x x^3 -3x^2 -6x -6)]^4__2}}= 38.21 \ D](https://tex.z-dn.net/?f=E%28x%5E2%29%20%3D%20D%5Cint%5Climits%5E4_2%20%282%2Be%5E%7B-x%7D%29dx%20%5C%5C%20%5C%5C%20%3D%20%5Cdfrac%7BD%7D%7B3%7D%5Be%5E%7B-4%7D%20%282e%5Ex%20x%5E3%20-3x%5E2%20-6x%20-6%29%5D%5E4__2%7D%7D%3D%2038.21%20%5C%20D)
Similarly;

⇒ 
⇒ 
⇒ 

∴ 
Now; 
Using Chebysher one sided inequality ; we have:

So; 
⇒ 
∴ 
To determine n; such that ;

⇒ 

Thus; we can conclude that; the minimum records to be retrieved by using Chebysher - one sided inequality is 17.
Answer:
Therefore, equation of the line that passes through (2,2) and is parellel to the line
is 
Step-by-step explanation:
Given:
a line 
To Find:
Equation of line passing through ( 2, 2) and is parellel to the line y=7x
Solution:
...........Given
Comparing with,

Where m =slope
We get

We know that parallel lines have Equal slopes.
Therefore the slope of the required line passing through (2 , 2) will also have the slope = m = 7.
Now the equation of line in slope point form given by

Substituting the points and so we will get the required equation of the line,

Therefore, equation of the line that passes through (2,2) and is parellel to the line
is 
Answer:
Your smart maybe
Step-by-step explanation: