Answer: f(120°) = (√3) + 1/2
Step-by-step explanation:
i will solve it with notable relations, because using a calculator is cutting steps.
f(120°) = 2*sin(120°) + cos(120°)
=2*sin(90° + 30°) + cos(90° + 30°)
here we can use the relations
cos(a + b) = cos(a)*cos(b) - sin(a)*sin(b)
sin(a + b) = cos(a)*sin(b) + cos(b)*sin(a)
then we have
f(120°) = 2*( cos(90°)*sin(30°) + cos(30°)*sin(90°)) + cos(90°)*cos(30°) - sin(90°)*sin(30°)
and
cos(90°) = 0
sin(90°) = 1
cos(30°) = (√3)/2
sin(30°) = 1/2
We replace those values in the equation and get:
f(120°) = 2*( 0 + (√3)/2) + 0 + 1/2 = (√3) + 1/2
8 positions x 8 employees = 64 different ways
Answer:
1) a = 110
2) b = 65
3) c = 115 d= 65 e = 115
How I found the last one?
The whole thing equals 360.
d is equal to 65 so I added those together.
That equals 130. So i subtracted that from 360.
I got 230. Next, I divided that by 2 to get the final 2 angles.

<h3><u>Correct </u><u>Question </u><u>:</u><u>-</u></h3>
What is the 5th term of an AP 2 , 14 ....98 .
<h3><u>Given </u><u>:</u><u>-</u><u> </u></h3>
<u>We </u><u>have </u><u> </u><u>AP</u><u>, </u>

- <u>AP </u><u>is </u><u>the </u><u>arithmetic </u><u>progression </u><u>or </u><u>a </u><u>sequence </u><u>of </u><u>numbers </u><u>in </u><u>which </u><u>succeeding </u><u>number </u><u>is </u><u>differ </u><u>from </u><u>preceeding </u><u>number </u><u>by </u><u>a </u><u>common </u><u>value</u><u>. </u>
<h3><u>Solution </u><u>:</u><u>-</u></h3>
<u>We </u><u>have </u><u>an </u><u>AP </u><u>:</u><u>-</u><u> </u><u>2</u><u> </u><u>,</u><u> </u><u>1</u><u>4</u><u> </u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>9</u><u>8</u>
<u>Therefore</u><u>, </u>
<u>Here</u><u>, </u>
Common difference of an AP



Thus, The common difference is 12
<u>Now</u><u>, </u>
We know that,





Hence, The 5th term of given AP is 50