1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GrogVix [38]
3 years ago
11

Explain the relationship between air resistance and gravitational acceleration on a falling object

Physics
1 answer:
Allushta [10]3 years ago
7 0
Air resistance, also called drag, acts upon a falling body by slowing the body down to thr point where it stops accelerating, and it falls at a constant speed, known as the terminal volocity of a falling object. Air resistance depends on the cross sectional area of the object, which is why the effect of air resistance on a large flat surfaced object is much greater than on a small, streamlined object.

 
You might be interested in
Which kind of wave moves back and forth along the direction of the wave?.
Jlenok [28]
The kind of wave it is Longitudinal
4 0
2 years ago
The velocity of waves in a ripple tank is 10 centimeters per second, and standing waves are produced with nodes spaced 3.0 centi
Vsevolod [243]
<span>node spacing = half of wavelength = 3 cm velocity = 10 cm/s = freq * wavelength hench freq = 10/6 = 5/3 = 1.7 hz</span>
6 0
3 years ago
Read 2 more answers
Can you access an instance variable from a static method? explain why or why not.
marusya05 [52]
<span>The reason a static method can't access instance variable is because static references the class not a specific instance of the class so there is no instance variable to access.</span>
5 0
3 years ago
Higher levels of co2 are more likely to be found where on the earth? question 15 options: uniformly around the globe as winds bl
AlladinOne [14]
Uniformly around the globe. it is mostly found in earths atmosphere. 
5 0
3 years ago
Give two mathematical examples of Newton's third law and how you get the solution​
bagirrra123 [75]

Answer:

1) Any particle moving in a horizontal plane slowed by friction, deceleration = 32 μ

2) The particle moving by acceleration = P/m - 32μ OR The external force = ma + 32μm

Explanation:

* Lets revise Newton’s Third Law:

- For every action there is a reaction, equal in magnitude and opposite

 in direction.

- Examples:

# 1) A particle moving freely against friction in a horizontal plane

- When no external forces acts on the particle, then its equation of

  motion is;

∵ ∑ forces in direction of motion = mass × acceleration

∵ No external force

∵ The friction force (F) = μR, where μ is coefficient of the frictional force

   and R is the normal reaction of the weight of the particle on the

   surface

∵ The frictional force is in opposite direction of the motion

∴ ∑ forces in the direction of motion = 0 - F

∴ 0 - F = mass × acceleration

- Substitute F by μR

∴ - μR = mass × acceleration

∵ R = mg where m is the mass of the particle and g is the acceleration

  of gravity

∴ - μ(mg) = ma ⇒ a is the acceleration of motion

- By divide both sides by m

∴ - μ(g) = a

∵ The acceleration of gravity ≅ 32 feet/sec²

∴ a = - 32 μ

* Any particle moving in a horizontal plane slowed by friction,

 deceleration = 32 μ

# 2) A particle moving under the action of an external force P in a

  horizontal plane.

- When an external force P acts on the particle, then its equation

 of motion is;

∵ ∑ forces in direction of motion = mass × acceleration

∵ The external force = P

∵ The friction force (F) = μR, where μ is coefficient of the frictional force

   and R is the normal reaction of the weight of the particle on the

   surface

∵ The frictional force is in opposite direction of the motion

∴ ∑ forces in the direction of motion = P - F

∴ P - F = mass × acceleration

- Substitute F by μR

∴ P - μR = mass × acceleration

∵ R = mg where m is the mass of the particle and g is the acceleration

  of gravity

∴ P - μ(mg) = ma ⇒ a is the acceleration of motion

∵ The acceleration of gravity ≅ 32 feet/sec²

∴ P - 32μm = ma ⇒ (1)

- divide both side by m

∴ a = (P - 32μm)/m ⇒ divide the 2 terms in the bracket by m

∴ a = P/m - 32μ

* The particle moving by acceleration = P/m - 32μ

- If you want to fin the external force P use equation (1)

∵ P - 32μm = ma ⇒ add 32μm to both sides

∴ P = ma + 32μm

* The external force = ma + 32μm

7 0
3 years ago
Other questions:
  • What is most likely the author’s motive for writing the article?
    12·2 answers
  • How could the position data from a motion sensor be used to create a velocity--time graph?
    8·1 answer
  • What is the resistance of a 20.0-meter-long
    11·2 answers
  • Consider an airplane modeled after the twin-engine Beechcraft Queen Air executive transport. The airplane has the following char
    8·1 answer
  • A ball is thrown straight up. For which situation are both the instantaneous velocity and the acceleration zero?
    10·1 answer
  • What caused the formation of the East African Rift Zone?
    12·2 answers
  • A hawk flies in a horizontal arc of radius 12.0 m at constant speed 4.00 m/s. (a) Find its centripetal acceleration. (b) It cont
    9·1 answer
  • A body is moving with an acceleration of 60 m/s^2(square).If the force applied to the body is 4200N.Calculate its mass.​
    10·1 answer
  • Which of the following features make Earth and Venus similar to each other?
    6·1 answer
  • A 5.0 kg cannonball is fired horizontally at 68 m/s from a 15-m-high cliff. A strong tailwind exerts a constant 12 N horizontal
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!