Correct question :
If the perimeters of each shape are equal, which equation can be used to find the value of x? A triangle with base x + 2, height x, and side length x + 4. A rectangle with length of x + 3 and width of one-half x. (x + 4) + x + (x + 2) = one-half x + (x + 3) (x + 2) + x + (x + 4) = 2 (one-half x) + 2 (x + 3) 2 (x) + 2 (x + 2) = 2 (one-half x) + 2 (x + 3) x + (x + 2) + (x + 4) = 2 (x + 3 and one-half)
Answer: (x + 2) + x + (x + 4) = 2 (one-half x) + 2 (x + 3)
Step-by-step explanation:
Given the following :
A triangle with base x + 2, height x, and side length x + 4 - - - -
b = x + 2 ; a = x ; c = x + 4
Perimeter (P) of a triangle :
P = a + b + c
P =( x + 2) + x + (x + 4) - - - (1)
A rectangle with length of x + 3 and width of one-half x
l = x + 3 ; w = 1/2 x
Perimeter of a rectangle (P) = 2(l+w)
P = 2(x+3) + 2(1/2x)
If perimeter of each same are the same ; then;
(1) = (2)
(x + 2) + x + (x + 4) = 2(x+3) + 2(1/2x)
Answer:
It's A) 2b+24x
Step-by-step explanation:
Answer:
Step-by-step explanation:
f(x)=(x²+20x+100) -3 because : 97 = 100 - 3
f(x) = (x+10)² -3 ....vertex form
Answer:
Solution By Gauss jordan elimination method
x = 3, y = 2 and z = 4
Answer:
She can read 24 pages in one hour.
Step-by-step explanation:
=
<em>hope this helps, good luck :)</em>