1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Amanda [17]
3 years ago
14

Is scale drawings and dilations similar? If so, how?

Mathematics
1 answer:
marshall27 [118]3 years ago
4 0
A<span> <span>dilation </span></span><span><span>is a transformation that produces an image that is the </span><span>same shape </span><span>as the original, but is a </span><span>different size<span>.   </span></span>A dilation stretches or shrinks the original figure.   <span> 
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
</span></span><span>http://www.virtualnerd.com/middle-math/ratios-proportions-percent/scale-drawings-models/scale-drawin...
^^^^^
will help</span>
You might be interested in
A screwdriver set has a selling price per unit of $27.95. It also has fixed costs of $837,500, variable costs per unit of $3.25
Sergio [31]
A) $1,016,250 is the right answer

3 0
3 years ago
Read 2 more answers
In the number 57.117 the 1
Romashka [77]
The value of the one is 0.1 and 0.01.

Hope this helps :D
3 0
3 years ago
interpret r(t) as the position of a moving object at time t. Find the curvature of the path and determine thetangential and norm
Igoryamba

Answer:

The curvature is \kappa=1

The tangential component of acceleration is a_{\boldsymbol{T}}=0

The normal component of acceleration is a_{\boldsymbol{N}}=1 (2)^2=4

Step-by-step explanation:

To find the curvature of the path we are going to use this formula:

\kappa=\frac{||d\boldsymbol{T}/dt||}{ds/dt}

where

\boldsymbol{T}} is the unit tangent vector.

\frac{ds}{dt}=|| \boldsymbol{r}'(t)}|| is the speed of the object

We need to find \boldsymbol{r}'(t), we know that \boldsymbol{r}(t)=cos \:2t \:\boldsymbol{i}+sin \:2t \:\boldsymbol{j}+ \:\boldsymbol{k} so

\boldsymbol{r}'(t)=\frac{d}{dt}\left(cos\left(2t\right)\right)\:\boldsymbol{i}+\frac{d}{dt}\left(sin\left(2t\right)\right)\:\boldsymbol{j}+\frac{d}{dt}\left(1)\right\:\boldsymbol{k}\\\boldsymbol{r}'(t)=-2\sin \left(2t\right)\boldsymbol{i}+2\cos \left(2t\right)\boldsymbol{j}

Next , we find the magnitude of derivative of the position vector

|| \boldsymbol{r}'(t)}||=\sqrt{(-2\sin \left(2t\right))^2+(2\cos \left(2t\right))^2} \\|| \boldsymbol{r}'(t)}||=\sqrt{2^2\sin ^2\left(2t\right)+2^2\cos ^2\left(2t\right)}\\|| \boldsymbol{r}'(t)}||=\sqrt{4\left(\sin ^2\left(2t\right)+\cos ^2\left(2t\right)\right)}\\|| \boldsymbol{r}'(t)}||=\sqrt{4}\sqrt{\sin ^2\left(2t\right)+\cos ^2\left(2t\right)}\\\\\mathrm{Use\:the\:following\:identity}:\quad \cos ^2\left(x\right)+\sin ^2\left(x\right)=1\\\\|| \boldsymbol{r}'(t)}||=2\sqrt{1}=2

The unit tangent vector is defined by

\boldsymbol{T}}=\frac{\boldsymbol{r}'(t)}{||\boldsymbol{r}'(t)||}

\boldsymbol{T}}=\frac{-2\sin \left(2t\right)\boldsymbol{i}+2\cos \left(2t\right)\boldsymbol{j}}{2} =\sin \left(2t\right)+\cos \left(2t\right)

We need to find the derivative of unit tangent vector

\boldsymbol{T}'=\frac{d}{dt}(\sin \left(2t\right)\boldsymbol{i}+\cos \left(2t\right)\boldsymbol{j}) \\\boldsymbol{T}'=-2\cdot(\sin \left(2t\right)\boldsymbol{i}+\cos \left(2t\right)\boldsymbol{j})

And the magnitude of the derivative of unit tangent vector is

||\boldsymbol{T}'||=2\sqrt{\cos ^2\left(x\right)+\sin ^2\left(x\right)} =2

The curvature is

\kappa=\frac{||d\boldsymbol{T}/dt||}{ds/dt}=\frac{2}{2} =1

The tangential component of acceleration is given by the formula

a_{\boldsymbol{T}}=\frac{d^2s}{dt^2}

We know that \frac{ds}{dt}=|| \boldsymbol{r}'(t)}|| and ||\boldsymbol{r}'(t)}||=2

\frac{d}{dt}\left(2\right)\: = 0 so

a_{\boldsymbol{T}}=0

The normal component of acceleration is given by the formula

a_{\boldsymbol{N}}=\kappa (\frac{ds}{dt})^2

We know that \kappa=1 and \frac{ds}{dt}=2 so

a_{\boldsymbol{N}}=1 (2)^2=4

3 0
3 years ago
Solve the following systems of equations.<br> 2= 2y + 5<br> | 3y - 3x = -12
ivanzaharov [21]

Answer:

x=5/2, y=-3/2. (5/2, -3/2).

Step-by-step explanation:

2=2y+5

3y-3x=-12

--------------

2-5=2y

2y=-3

y=-3/2

3(-3/2)-3x=-12

-9/2-3x=-12

3x=-9/2-(-12)

3x=-9/2+12

3x=-9/2+24/2

3x=15/2

x=(15/2)/3

x=(15/2)(1/3)

x=15/6=5/2

7 0
3 years ago
Which relation DOES NOT represent a
Natasha2012 [34]

Answer:

C

Step-by-step explanation:

Hope this Helps :)

6 0
3 years ago
Other questions:
  • A rectangular room has a perimeter of 70m and is 20m long. Write an equation to represent the area.
    13·2 answers
  • A standard number cube is rolled 288 times. Predict how many times a 3 or a 5 will be the result.
    5·1 answer
  • Find the sum of the first 31 terms of the following series, to the nearest integer.<br> 5,14,23,..
    14·1 answer
  • Only the Fahrenheit one plz
    13·1 answer
  • PLEASE HELP ME! I WILL GIVE YOU 40 PTS.
    8·2 answers
  • -8x2 + 54x + 140 factorized form?
    6·2 answers
  • Amalie has been saving money buy an electric guitar. A local store has just
    6·1 answer
  • Carrots cost 0.84 euros per kilogram.
    11·1 answer
  • 13&gt;2x+7 3x-4&lt;23<br><br><br> that's the problem
    11·2 answers
  • Help ill give u lots of points dude
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!