D.6 is your answer
Hope this helps!!!!
Any polynomial's graph cannot have two simultaneous maxima, so they must contain a minima between them. Thus, the total number of turning points of the graph is 3. Generally, when plotting a polynomial, the number of turning points is:
n = d -1; where d is the degree of the polynomial and n is the number of turning points. Thus, this function's degree must be at least 4. The answer is b.
Answer:
=========
<h2>Given</h2>
<h3>Line 1</h3>
<h3>Line 2</h3>
- Passing through the points (4, 3) and (5, - 3)
<h2>To find</h2>
- The value of k, if the lines are perpendicular
<h2>Solution</h2>
We know the perpendicular lines have opposite reciprocal slopes, that is the product of their slopes is - 1.
Find the slope of line 1 by converting the equation into slope-intercept from standard form:
<u><em>Info:</em></u>
- <em>standard form is ⇒ ax + by + c = 0, </em>
- <em>slope - intercept form is ⇒ y = mx + b, where m is the slope</em>
- 3x - ky + 7 = 0
- ky = 3x + 7
- y = (3/k)x + 7/k
Its slope is 3/k.
Find the slope of line 2, using the slope formula:
- m = (y₂ - y₁)/(x₂ - x₁) = (-3 - 3)/(5 - 4) = - 6/1 = - 6
We have both the slopes now. Find their product:
- (3/k)*(- 6) = - 1
- - 18/k = - 1
- k = 18
So when k is 18, the lines are perpendicular.
Answer:
<em>n</em> - <em>k</em> + 1
Step-by-step explanation:
This is assuming (because you did not say) that <em>n</em> and <em>k</em> are integers and <em>n</em> is greater than <em>k</em>.
Example: from 2 to 5 {2, 3, 4, 5} includes 5 - 2 + 1 = 4 numbers.
Example: from -6 to 4 includes 4 - (-6) + 1 = 11 numbers, namely {-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4}
A. You can factor it to those terms