It looks like your equations are
7M - 2t = -30
5t - 12M = 115
<u>Solving by substitution</u>
Solve either equation for one variable. For example,
7M - 2t = -30 ⇒ t = (7M + 30)/2
Substitute this into the other equation and solve for M.
5 × (7M + 30)/2 - 12M = 115
5 (7M + 30) - 24M = 230
35M + 150 - 24M = 230
11M = 80
M = 80/11
Now solve for t.
t = (7 × (80/11) + 30)/2
t = (560/11 + 30)/2
t = (890/11)/2
t = 445/11
<u>Solving by elimination</u>
Multiply both equations by an appropriate factor to make the coefficients of one of the variables sum to zero. For example,
7M - 2t = -30 ⇒ -10t + 35M = -150 … (multiply by 5)
5t - 12M = 115 ⇒ 10t - 24M = 230 … (multiply by 2)
Now combining the equations eliminates the t terms, and
(-10t + 35M) + (10t - 24M) = -150 + 230
11M = 80
M = 80/11
It follows that
7 × (80/11) - 2t = -30
560/11 - 2t = -30
2t = 890/11
t = 445/11
Answer:
SHe put the decimal point in the wrong spot, it's suppose to be 43.89
Step-by-step explanation:
First, we are going to find the vertex of our quadratic. Remember that to find the vertex

of a quadratic equation of the form

, we use the vertex formula

, and then, we evaluate our equation at

to find

.
We now from our quadratic that

and

, so lets use our formula:




Now we can evaluate our quadratic at 8 to find

:




So the vertex of our function is (8,-72)
Next, we are going to use the vertex to rewrite our quadratic equation:



The x-coordinate of the minimum will be the x-coordinate of the vertex; in other words: 8.
We can conclude that:
The rewritten equation is

The x-coordinate of the minimum is 8
i guess is by multiplying 3by the first equation and multiply 2by the second equation
Answer:
5 (d)
Step-by-step explanation:
2(6+4) - 3(5)
2× 10 - 25
20-15 = 5
I hope this helps you.