Using a binomial distribution considering there's a 30% chance it will rain on any of the three days:
<span>The probability of it raining on 0 days is (1)(0.7)(0.7)(0.7) = 34.3%. </span>
<span>The probability of it raining on 1 day is (3)(0.3)(0.7)(0.7) = 44.1%. </span>
<span>The probability of it raining on 2 days is (3)(0.3)(0.3)(0.7) = 18.9%. </span>
<span>The probability of it raining on 3 days is (1)(0.3)(0.3)(0.3) = 2.7%. </span>
<span>There's a 65.7% chance that it will rain at least once over the three-day period.</span>
To justify the yearly membership, you want to pay at least the same amount as a no-membership purchase, otherwise you would be losing money by purchasing a yearly membership. So set the no-membership cost equal to the yearly membership cost and solve.
no-membership costs $2 per day for swimming and $5 per day for aerobic, in other words, $7 per day. So if we let d = number of days, our cost can be calculated by "7d"
a yearly membership costs $200 plus $3 per day, or in other words, "200 + 3d"
Set them equal to each other and solve:
7d = 200 + 3d
4d = 200
d = 50
So you would need to attend the classes for at least 50 days to justify a yearly membership. I hope that helps!
Should be Cubic meters or Cubic decimeters
Mass of the water in pool in Kilograms
Volume of water in pool in Liters
Answer:
me
Step-by-step explanation: