Looks like 14.4 because you have to add them all together and divide by the total numbers
(20+22+10+5+15)/ 5
Proving a relation for all natural numbers involves proving it for n = 1 and showing that it holds for n + 1 if it is assumed that it is true for any n.
The relation 2+4+6+...+2n = n^2+n has to be proved.
If n = 1, the right hand side is equal to 2*1 = 2 and the left hand side is equal to 1^1 + 1 = 1 + 1 = 2
Assume that the relation holds for any value of n.
2 + 4 + 6 + ... + 2n + 2(n+1) = n^2 + n + 2(n + 1)
= n^2 + n + 2n + 2
= n^2 + 2n + 1 + n + 1
= (n + 1)^2 + (n + 1)
This shows that the given relation is true for n = 1 and if it is assumed to be true for n it is also true for n + 1.
<span>By mathematical induction the relation is true for any value of n.</span>
Answer: q=0.3p-2
Well everytime P goes up by one then Q goes up by positive 0.3
7^3 power is the answer to your question