Answer:
3.53×10⁶ N/c due west
Explanation:
From the question
E = F'/q........................ Equation 1
Where E = Electric Field, F = Net Force, q = Charge.
But,
F' = F₂-F₁...................... Equation 2
Substitute equation 2 into equation 1
E = (F₂-F₁)/q................ Equation 3
Given: F₁ = 3 N due east, F₂ = 15 N due west, q = 3.4×10⁻⁶ C
Substitute these values into equation 1
E = (15-3)/(3.4×10⁻⁶)
E = 12/(3.4×10⁻⁶)
E = 3.53×10⁶ N/c due west
The amount of heat needed to increase the temperature of a substance by

is given by

where
m is the mass of the substance

is its specific heat capacity

is the increase of temperature
The sample of silver of our problem has a mass of

. Its specific heat capacity is

and the increase in temperature is

Therefore, the amount of heat needed is
You’ll need 4H20 molecules to balance the equation.
As the particles in a soup reach the boiling point, the kinetic energy of the molecules will start increasing and ultimately bubbles will be created in the soup and it will slowly start to vaporize. Boiling point of a liquid is the temperature at which the vapor pressure of the liquid will become equal to the atmospheric pressure.<span> </span>
Answer:
The velocity and mass of the target ball are 1.6 m/s and 1.29 kg.
Explanation:
Given that,
Mass of softball = 0.220 kg
Speed = 5.5 m/s
(a). We need to calculate the velocity of the target ball
Using conservation of momentum



....(I)
The velocity approach is equal to the separation of velocity


(b). We need to calculate the mass of the target ball
Now, Put the value of v₂ in equation (I)



Hence, The velocity and mass of the target ball are 1.6 m/s and 1.29 kg.