Uranus is much much larger than Earth, so the distance from the planet's center is much much greater
The ball's gravitational potential energy is converted into kinetic energy as it falls toward the ground.
<h3>How can the height of a dropped ball be determined?</h3>
Y = 1/2 g t 2, where y is the height above the ground, g = 9.8 m/s2, and t = 1.3 s, is the formula for problems like these. Any freely falling body with an initial velocity of zero meters per second can use this formula. figuring out how much y is.
A ball drops from the top of a building and picks up speed as it descends. Its speed is increasing by 10 m/s every second. What we refer to as motion with constant acceleration is, for example, a ball falling due to gravity.
The ball's parabolic motion causes it to move at a speed of 26.3 m/s right before it strikes the ground, which is faster than its straight downhill motion, which has a speed of 17.1 m/s. Take note of the rising positive y direction in the above graphic.
To Learn more About potential energy, Refer:
brainly.com/question/14427111
#SPJ10
True
The sample of the experiment is randomized in randomization.
Answer:
they use thermals and air currents to glide.
Explanation:
when they flap higher they use thermals and air currents because flapping takes a lot of fuel,energy
Answer:
the angular velocity of the carousel after the child has started running =

Explanation:
Given that
the mass of the child = m
The radius of the disc = R
moment of inertia I = 
change in time = 
By using the torque around the inertia ; we have:
T = I×∝
where
R×F = I × ∝
R×F =
∝
F =
∝
∝ =
( expression for angular angular acceleration)
The first equation of motion of rotating wheel can be expressed as :

where ;
∝ =
Then;


∴ the angular velocity of the carousel after the child has started running =
