3951 is an example of a standard form.
What standard form means is the number is written in numerical form.
More examples: 5269, 95862, 125634, etc.
Answer: 2, 2, 2, 5, 13, 13.
Step-by-step explanation:
Here is the math in order to find the prime factorization
6760 ÷ 2 = 3380
3380 ÷ 2 = 1690
1690 ÷ 2 = 845
845 ÷ 5 = 169
169 ÷ 13 = 13
13 ÷ 13 = 1
Answer:
X<-4
Step-by-step explanation:
-3x+10>22
subtract 10 to both sides
-3x>12
divide by -3 on both sides
when you divide by a negative number you flip the sign so the answer will be x<-4
Answer:
Option B. Cosec θ = –5/3
Option C. Cot θ = 4/3
Option D. Cos θ = –4/5
Step-by-step explanation:
From the question given above, the following data were obtained:
Tan θ = 3/4
θ is in 3rd quadrant
Recall
Tan θ = Opposite / Adjacent
Tan θ = 3/4 = Opposite / Adjacent
Thus,
Opposite = 3
Adjacent = 4
Next, we shall determine the Hypothenus. This can be obtained as follow:
Opposite = 3
Adjacent = 4
Hypothenus =?
Hypo² = Opp² + Adj²
Hypo² = 3² + 4²
Hypo² = 9 + 16
Hypo² = 25
Take the square root of both side
Hypo = √25
Hypothenus = 5
Recall:
In the 3rd quadant, only Tan is positive.
Therefore,
Hypothenus = –5
Finally, we shall determine Sine θ, Cos θ, Cot θ and Cosec θ to determine which option is correct. This can be obtained as follow:
Opposite = 3
Adjacent = 4
Hypothenus = –5
Sine θ = Opposite / Hypothenus
Sine θ = 3/–5
Sine θ = –3/5
Cos θ = Adjacent / Hypothenus
Cos θ = 4/–5
Cos θ = –4/5
Cot θ = 1/ Tan θ
Tan θ = 3/4
Cot θ = 1 ÷ 3/4
Invert
Cot θ = 1 × 4/3
Cot θ = 4/3
Cosec θ = 1/ Sine θ
Sine θ = –3/5
Cosec θ = 1 ÷ –3/5
Invert
Cosec θ = 1 × –5/3
Cosec θ = –5/3
SUMMARY
Sine θ = –3/5
Cos θ = –4/5
Tan θ = 3/4
Cot θ = 4/3
Cosec θ = –5/3
Therefore, option B, C and D gives the correct answer to the question.