Parallel lines, slope is the same so
1) 3x+8y = 12
8y = -3x + 12
y = -3/8(x) + 3/2, slope = -3/8
slope of a line that is parallel = -3/8
2)5x+4y = 5
4y = -5x + 5
y = -5/4(x) + 5/4; slope is -5/4
slope of a line that is parallel = -5/4
--------------------
perpendicular, slope is opposite and reciprocal
3)
3x+8y = 11
8y = -3x + 11
y = -3/8(x) + 11/8. slope = -3/8
slope of perpendicular line = 8/3
4)
x = -7, slope is undefined
so slope of perpendicular line is 0
5)
3x+2y = 12
2y = -3x + 12
y = -3/2(x) + 6 ; slope = -3/2
5x - 6y = 8
6y = 4x - 8
y = 2/3(x) - 4/3; slope is 2/3
slope is opposite and reciprocal, so the equals are perpendicular
6)
3x + y = 5
y = -3x + 5; slope = -3
6x + 2y = -15
2y = -6x - 15
y = -3x - 7.5; slope = -3
both have slope = -3 so equations are parallel
Answer:
Step-by-step explanation:
Identities : -
cot = cos / sin
tan = sin / cos
( cot + tan ) sin = sec
LHS
= ( cot + tan ) sin
= ( ( cos / sin ) + ( sin / cos ) ) sin
= ( ( cos sin ) / sin ) + ( sin² / cos )
= cos + ( sin² / cos )
LCM = cos
= ( cos² / cos ) + ( sin² / cos )
= ( cos² + sin² ) / cos
Identity : -
cos² + sin² = 1
= 1 / cos
= sec
= RHS
Hence proved.
Answer:
answer: 740
Step-by-step explanation:
Hope that helps!
Answer: The angles of ΔA'B'C are congruent to the corresponding parts of the original triangle.
Step-by-step explanation:
Given : Triangle ABC was rotated 90 degrees clockwise. Then it underwent a dilation centered at the origin with a scale factor of 4.
A rotation is a rigid transformation that creates congruent images but dilation is not a rigid transformation, it creates similar images but not congruent.
Also, the corresponding angles of similar triangles are congruent.
Therefore, The angles of ΔA'B'C are congruent to the corresponding parts of the original triangle.
I would describe it as talented and accurate. I have not gotten anything lower than a b+ in any of my classes, including math.