Answer:
1. y' = 3x² / 4y²
2. y'' = 3x/8y⁵[(4y³ – 3x³)]
Step-by-step explanation:
From the question given above, the following data were obtained:
3x³ – 4y³ = 4
y' =?
y'' =?
1. Determination of y'
To obtain y', we simply defferentiate the expression ones. This can be obtained as follow:
3x³ – 4y³ = 4
Differentiate
9x² – 12y²dy/dx = 0
Rearrange
12y²dy/dx = 9x²
Divide both side by 12y²
dy/dx = 9x² / 12y²
dy/dx = 3x² / 4y²
y' = 3x² / 4y²
2. Determination of y''
To obtain y'', we simply defferentiate above expression i.e y' = 3x² / 4y². This can be obtained as follow:
3x² / 4y²
Let:
u = 3x²
v = 4y²
Find u' and v'
u' = 6x
v' = 8ydy/dx
Applying quotient rule
y'' = [vu' – uv'] / v²
y'' = [4y²(6x) – 3x²(8ydy/dx)] / (4y²)²
y'' = [24xy² – 24x²ydy/dx] / 16y⁴
Recall:
dy/dx = 3x² / 4y²
y'' = [24xy² – 24x²y (3x² / 4y² )] / 16y⁴
y'' = [24xy² – 18x⁴/y] / 16y⁴
y'' = 1/16y⁴[24xy² – 18x⁴/y]
y'' = 1/16y⁴[(24xy³ – 18x⁴)/y]
y'' = 1/16y⁵[(24xy³ – 18x⁴)]
y'' = 6x/16y⁵[(4y³ – 3x³)]
y'' = 3x/8y⁵[(4y³ – 3x³)]
Move the decimal to right 3 times
Answer:
2np + p²
Step-by-step explanation:
The general formula for the area of a square is A = s², where s = the length of one side of the square. In the case of the smaller square the area would be: n x n = n². Since the side of the larger square is 'p' inches longer, the length of one side is 'n + p'. To find the area of the larger square, we have to take the length x length or (n +p)².
Using FOIL (forward, outside, inside, last):
(n + p)(n+p) = n² + 2np + p²
Since the area of the first triangle is n², we can subtract this amount from the area of the larger square to find out how many square inches greater the larger square area is.
n² + 2np + p² - n² = 2np + p²
Answer:
r=28.27 cm aprox
Step-by-step explanation:
Well you know that the area of a circle is A= 
so
2511=
so
=2511/
r=28.27 cm aprox
29580 + 3440 = 33020. The is about 33,000mi. The answer is d.