Answer:
-4.6
Step-by-step explanation:
-2.3-2.3=-4.6
Answer:

Step-by-step explanation:
The <u>width</u> of a square is its <u>side length</u>.
The <u>width</u> of a circle is its <u>diameter</u>.
Therefore, the largest possible circle that can be cut out from a square is a circle whose <u>diameter</u> is <u>equal in length</u> to the <u>side length</u> of the square.
<u>Formulas</u>



If the diameter is equal to the side length of the square, then:

Therefore:

So the ratio of the area of the circle to the original square is:

Given:
- side length (s) = 6 in
- radius (r) = 6 ÷ 2 = 3 in


Ratio of circle to square:

I dont understand your question.......
Answer:
p= 2
Step-by-step explanation:
Isolate the variable by dividing each side by factors that don't contain the variable.