Answer:

Step-by-step explanation:
In the equation: 
x's can be simplified and y's can be simplified!
Always remember that for exponents, you subtract the powers when dividing
so for x: 15-8 = 7
for y: 9-3 = 6
so the final answer is: 
Answer:
4m +2m = D
Step-by-step explanation:
i think i havent done this in a long time but idk
ik that dalia has 6 shoes
Factor out -1
-1(x^2+x-6)
Factor the inner trinomial
-1(x+3)(x-2)
Final answer: B
Answer:
7x + 15x= 21x
Step-by-step explanation:
7x + 15x
= (7 + 15)x
= 22x
If you're using the app, try seeing this answer through your browser: brainly.com/question/2264253_______________
Evaluate the indefinite integral:

Trigonometric substitution:

then,
![\begin{array}{lcl} \mathsf{x=sin\,\theta}&\quad\Rightarrow\quad&\mathsf{dx=cos\,\theta\,d\theta\qquad\checkmark}\\\\\\ &&\mathsf{x^2=sin^2\,\theta}\\\\ &&\mathsf{x^2=1-cos^2\,\theta}\\\\ &&\mathsf{cos^2\,\theta=1-x^2}\\\\ &&\mathsf{cos\,\theta=\sqrt{1-x^2}\qquad\checkmark}\\\\\\ &&\textsf{because }\mathsf{cos\,\theta}\textsf{ is positive for }\mathsf{\theta\in \left[\dfrac{\pi}{2},\,\dfrac{\pi}{2}\right].} \end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Blcl%7D%20%5Cmathsf%7Bx%3Dsin%5C%2C%5Ctheta%7D%26%5Cquad%5CRightarrow%5Cquad%26%5Cmathsf%7Bdx%3Dcos%5C%2C%5Ctheta%5C%2Cd%5Ctheta%5Cqquad%5Ccheckmark%7D%5C%5C%5C%5C%5C%5C%20%26%26%5Cmathsf%7Bx%5E2%3Dsin%5E2%5C%2C%5Ctheta%7D%5C%5C%5C%5C%20%26%26%5Cmathsf%7Bx%5E2%3D1-cos%5E2%5C%2C%5Ctheta%7D%5C%5C%5C%5C%20%26%26%5Cmathsf%7Bcos%5E2%5C%2C%5Ctheta%3D1-x%5E2%7D%5C%5C%5C%5C%20%26%26%5Cmathsf%7Bcos%5C%2C%5Ctheta%3D%5Csqrt%7B1-x%5E2%7D%5Cqquad%5Ccheckmark%7D%5C%5C%5C%5C%5C%5C%20%26%26%5Ctextsf%7Bbecause%20%7D%5Cmathsf%7Bcos%5C%2C%5Ctheta%7D%5Ctextsf%7B%20is%20positive%20for%20%7D%5Cmathsf%7B%5Ctheta%5Cin%20%5Cleft%5B%5Cdfrac%7B%5Cpi%7D%7B2%7D%2C%5C%2C%5Cdfrac%7B%5Cpi%7D%7B2%7D%5Cright%5D.%7D%20%5Cend%7Barray%7D)
So the integral

becomes

Integrate

by parts:


Substitute back for the variable x, and you get

I hope this helps. =)
Tags: <em>integral inverse sine function angle arcsin sine sin trigonometric trig substitution differential integral calculus</em>