The taylor series for the f(x)=8/x centered at the given value of a=-4 is -2+2(x+4)/1!-24/16
/2!+...........
Given a function f(x)=9/x,a=-4.
We are required to find the taylor series for the function f(x)=8/x centered at the given value of a and a=-4.
The taylor series of a function f(x)=
Where the terms in f prime
(a) represent the derivatives of x valued at a.
For the given function.f(x)=8/x and a=-4.
So,f(a)=f(-4)=8/(-4)=-2.
(a)=
(-4)=-8/(
=-8/16
=-1/2
The series of f(x) is as under:
f(x)=f(-4)+

=-2+2(x+4)/1!-24/16
/2!+...........
Hence the taylor series for the f(x)=8/x centered at the given value of a=-4 is -2+2(x+4)/1!-24/16
/2!+...........
Learn more about taylor series at brainly.com/question/23334489
#SPJ4
2 rows of geraniums and 4rows of the other one
Answer:
Step-by-step explanation:
Answer:
a = 3
b = 2
c = 0
d = -4
Step-by-step explanation:
Form 4 equations and solve simultaneously
28 = a(2)³ + b(2)² + c(2) + d
28 = 8a + 4b + 2c + d (1)
-5 = -a + b - c + d (2)
220 = 64a + 16b + 4c + d (3)
-20 = -8a + 4b - 2c + d (4)
(1) + (4)
28 = 8a + 4b + 2c + d
-20 = -8a + 4b - 2c + d
8 = 8b + 2d
d = 4 - 4b
Equation (2)
c = -a + b + d + 5
c = -a + b + 4 - 4b+ 5
c = -a - 3b + 9
28 = 8a + 4b + 2c + d (1)
28 = 8a + 4b + 2(-a - 3b + 9) + 4 - 4b
28 = 6a - 6b + 22
6a - 6b = 6
a - b = 1
a = b + 1
220 = 64a + 16b + 4c + d (3)
220 = 64(b + 1) + 16b + 4(-b - 1 - 3b + 9) + 4 - 4b
220 = 60b + 100
60b = 120
b = 2
a = 2 + 1
a = 3
c = -3 - 3(2) + 9
c = 0
d = 4 - 4(2)
d = -4
The answer to this would be O