I'm just going to write out the answers.
1. 3/6 < 1
2. 5/4 > 1
3. 8/10 < 1
4. 5/8 < 1
5. 7/9 < 1
6. 9/10 < 1
7. 5/8 < 1
8. 11/8 > 1
9. 32/35 < 1
10. 33/36 < 1
11. 13/15 < 1
12. 45/54 < 1
13. 11/10 > 1
14. 52/46 > 1
15. 19/21 < 1
16. 78/80 < 1
Hope this helps! :)
Answer:
Step-by-step explanation:
the range is written as (min y value, max y value)
the domain is written as (min x value, max x value)
question 6
the min y value on the picture is -3, while the arrows point upward, so the max is infinity, so the domain is [-3,∞), with a bracket on -3 because -3 is included
[-3,∞)
question 7
the min x value is the leftmost point, which is at x = -3, while the max is the rightmost point at x = 3, and both are included in the domain so there should be brackets on both
[-3,3]
question 8
the arrow on the left points to the left and up infinitely, so the min is -∞, the arrow on the right points to the right and up infinitely, so the max x value is ∞
(-∞,∞)
question 9
the min value is the bottommost point at y = -2, and the arrow points upward infinitely so the max y value is ∞
[-2,∞)
question 10
the arrow on the left points to the left infinitely so the min x value is -∞, the arrow on the right points to the right infinitely so the max x value is ∞
(-∞,∞)
Answer:
is c
Step-by-step explanation:
Answer:

option B is correct
Step-by-step explanation:
We have 5 spaces in the license plate:
_ _ _ _ _
we have 26 available letters, and 10 available numbers.
starting with letters:
- how many choices do i have to place the 1st letter? 26.
26 _ _ _ _
- how many choices do i have to place the 2nd letter? 26 (since we're allowed to repeat letters)
26 26 _ _ _
- how many choices do i have to place the 3rd letter? 26
26 26 26 _ _
we've used all the places for letters, (note: the exact position of the letters doesn't matter here, the first letter could've been placed anywhere in _ _ _ _ _, but the amount of possible choices for letters would always be 26).
let's move on to numbers.
- how many choices do i have to place the 1st number? 10
26 26 26 10 _
- how many choices do i have to place the 2nd number? 10
26 26 26 10 10
we've completed our number plate. Next we'll simply multiply all these numbers to get all the possible arrangements in which numbers and letters can be displayed on a license place.

option B is correct