Answer:
5
Step-by-step explanation:
Refer to attachment for marking of sides.
In the given figure , ∆ABC , ∆ABD and ∆ADC are right angled triangles . Therefore here we can use the Pythagoras theorem , as ,
base² + perpendicular² = hypotenuse ² .
<u>•</u><u> </u><u>In </u><u>∆</u><u>A</u><u>B</u><u>D</u><u> </u><u>,</u><u> </u><u>we </u><u>have</u><u> </u><u>;</u>
AB² + BD² = AD²
AB² + x² = 10²
AB² = 10² - x²
AB² = 100 - x²
<u>•</u><u> </u><u>Again</u><u> </u><u>in </u><u>∆</u><u>A</u><u>D</u><u>C</u><u> </u><u>,</u><u> </u><u>we </u><u>have</u><u> </u><u>;</u>
AC² + AD² = CD²
AC² = 20² - 10²
AC² = 400 - 100
AC² = 300
<u>Again</u><u> </u><u>in </u><u>∆</u><u>A</u><u>B</u><u>C</u><u> </u><u>,</u><u> </u><u>we </u><u>have</u><u> </u><u>,</u>
AC² = AB² + BC²
Substituting the values from above ,
300 = 100-x² + (20-x)²
300 = 100 - x² + 400 + x² - 40x
40x = 500 - 300
40x = 200
x = 200/40
x = 5
<h3>
Hence the required answer is 5 .</h3>
Answer:
Step-by-step explanation:
Given problems are absolute value problems, So we need to plug the values of given parameters and get the final result.
We have given here,
a =-2 , b = 3 , c = -4 and d = -6
Now we know that An absolute function always gives a positive value.
Let's apply this strategy in the given problems.
1. ║a+b║
Plug a= -2 and b = 3
We get, ║-2+3║=║1║= 1
2. 5║c+b║
Plug c= -4 and b=3
i.e. 5║-4 + 3║= 5║-1║=5×1 = 5
3. a+b║c║
Plug values a= -2 , b=3 and c=-4
i.e -2 +3║-4║ = -2 + 3×4 = -2 + 12 = 10
4. ║a+c║÷(-d)
i.e ║-2 + (-4)║÷(-6) = ║-6║÷(-6) = 6÷(-6) = -1
5. 3║a+d║+b
i.e 3║-2+(-6)║+3 = 3║-8║+3 = 3×8 +3 = 27
Answer:
A
Step-by-step explanation:
Root of ( 20^2 - 16^2 ) = 12