The statement is false, as the system can have no solutions or infinite solutions.
<h3>
Is the statement true or false?</h3>
The statement says that a system of linear equations with 3 variables and 3 equations has one solution.
If the variables are x, y, and z, then the system can be written as:

Now, the statement is clearly false. Suppose that we have:

Then we have 3 parallel equations. Parallel equations never do intercept, then this system has no solutions.
Then there are systems of 3 variables with 3 equations where there are no solutions, so the statement is false.
If you want to learn more about systems of equations:
brainly.com/question/13729904
#SPJ1
0.5(20x - 50y + 36) - 0.25(-100x + 40y - 12)
10x - 25y + 18 + 25x - 10y + 3
35x - 35y + 21
Here are some Examples: :)

is 0.2222222222 and so on

is 0.4444444444 and so on

is 0.777777777 and so on
So it could be anything like 9 or 6 as long is its like this

I know this is really late but the answer is y=-1/4x
The answer is <span>5, 4, 2
</span>
Among all choices we have 5, so
x = 5
x - 5 = 0
Let's divide the expression by (x - 5) using the long division:
x³ - 11x² + 38x - 40
(x - 5) * x² = x³ - 5x² Subtract
____________________________
-6x² + 38x - 40
(x - 5) * (-6x) = -6x² + 30x Subtract
____________________________
8x - 40
(x - 5) * 8 = 8x - 40 Sutract
____________________________
0
Thus: x³ - 11x² + 38x - 40 = (x - 5)(x² - 6x + 8)
Now, let's simplify x² - 6x + 8.
x² - 6x + 8 = x² - 2x - 4x + 8 =
= x² - 2*x - (4*x - 4*2) =
= x(x - 2) - 4(x - 2) =
= (x - 4)(x - 2)
Hence:
x³ - 11x² + 38x - 40 = (x - 5)(x - 4)(x - 2)
To calculate zero:
x³ - 11x² + 38x - 40 = 0
(x - 5)(x - 4)(x - 2) = 0
x - 5 = 0 or x - 4 = 0 or x - 2 = 0
x = 5 or x = 4 or x = 2