For numbers 15-17, we need to remember that two of a triangle's angles are always acute and the third angle will allow us to classify the triangle based on its angles. now that we know this, let's look at #15. the first two angles listed are acute, and the third is an obtuse angle, therefore it is an obtuse triangle. on #16 we have three acute angles, so it is an acute triangle. #17 has two acute angles and a right angle so it is a right triangle.
on numbers 21-23, we need to know that a triangle with all congruent sides is called equilateral, a triangle with two equal sides is isosceles, and a triangle with no equal sides is called scalene. #21 shows two equal sides so it is an isosceles triangle. #22 has three equal sides so it is an equilateral triangle. #23 has no equal sides so it is scalene. hope this helped! :)
So there is a rule
(+)(+)=+
(-)(+)= -
(+)(-)= -
So now if you subtract 6 with 7 you will end up having -1 as you’re answer. Hope this helps
Answer:
75
Step-by-step explanation:
Answer:
Two times at (-1,0) and (2.5,0)
Step-by-step explanation:
When the graph intersects or touches x-axis, y is equal to 0
so y = -2x^2 + 3x + 5
=> 0 = -2x^2 + 3x + 5
The formula to solve a quadratic equation of the form ax^2 + bx + c = 0 is equal to x = [-b +/-√(b^2 - 4ac)]/2a
so a = -2
b = 3
c = 5
substitute in the formula
x = [-3 +/- √(3^2 - 4x-2x5)]/2(-2)
x = [-3 +/- √(9 + 40)]/(-4)
x = [-3 +/- 7]/(-4)
x1 = (-3 + 7)/(-4) = 4/-4 = -1
x2 = (-3 - 7)/(-4) = -10/-4 = 5/2 = 2.5
so the graph has two x-intercepts (-1,0) and (2.5,0), therefore it intersects x-axis two times