Let a = 693, b = 567 and c = 441
Now first we will find HCF of 693 and 567 by using Euclid’s division algorithm as under
693 = 567 x 1 + 126
567 = 126 x 4 + 63
126 = 63 x 2 + 0
Hence, HCF of 693 and 567 is 63
Now we will find HCF of third number i.e., 441 with 63 So by Euclid’s division alogorithm for 441 and 63
441 = 63 x 7+0
=> HCF of 441 and 63 is 63.
Hence, HCF of 441, 567 and 693 is 63.
Answer:
the answer to your question is 9,023,000.
I hope this helps you, have a wonderful day!
Answer:
18
Step-by-step explanation:
A. 6 because 30/5= 6
B. She has gotten 35 points because 7*5=35
Answer:
![\boxed{4 \sqrt[8]{ {d}^{3} } }](https://tex.z-dn.net/?f=%20%5Cboxed%7B4%20%5Csqrt%5B8%5D%7B%20%7Bd%7D%5E%7B3%7D%20%7D%20%7D%20)
Step-by-step explanation:
![= > 4 {d}^{ \frac{3}{8} } \\ \\ = > 4({d}^{3 \times \frac{1}{8} }) \\ \\ = > 4( {d}^{3} \times {d}^{ \frac{1}{8} } ) \\ \\ = > 4( {d}^{3} \times \sqrt[8]{d} ) \\ \\ = > 4 \sqrt[8]{ {d}^{3} }](https://tex.z-dn.net/?f=%20%3D%20%20%3E%204%20%7Bd%7D%5E%7B%20%5Cfrac%7B3%7D%7B8%7D%20%7D%20%20%20%5C%5C%20%20%5C%5C%20%3D%20%20%20%3E%204%28%7Bd%7D%5E%7B3%20%5Ctimes%20%20%5Cfrac%7B1%7D%7B8%7D%20%7D%29%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%204%28%20%7Bd%7D%5E%7B3%7D%20%20%5Ctimes%20%20%20%7Bd%7D%5E%7B%20%5Cfrac%7B1%7D%7B8%7D%20%7D%20%29%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%204%28%20%7Bd%7D%5E%7B3%7D%20%20%5Ctimes%20%20%5Csqrt%5B8%5D%7Bd%7D%20%29%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%204%20%20%5Csqrt%5B8%5D%7B%20%7Bd%7D%5E%7B3%7D%20%7D%20)