<span>Jet streams are the major means of transport for weather systems. A jet stream is an area of strong winds ranging from 120-250 mph that can be thousands of miles long, a couple of hundred miles across and a few miles deep. Jet streams usually sit at the boundary between the troposphere and the stratosphere at a level called the tropopause. This means most jet streams are about 6-9 miles off the ground. Figure A is a cross section of a jet stream.
</span>
The dynamics of jet streams are actually quite complicated, so this is a very simplified version of what creates jets. The basic idea that drives jet formation is this: a strong horizontal temperature contrast, like the one between the North Pole and the equator, causes a dramatic increase in horizontal wind speed with height. Therefore, a jet stream forms directly over the center of the strongest area of horizontal temperature difference, or the front. As a general rule, a strong front has a jet stream directly above it that is parallel to it. Figure B shows that jet streams are positioned just below the tropopause (the red lines) and above the fronts, in this case, the boundaries between two circulation cells carrying air of different temperatures.
The answer for the first question is A. Proton is the subatomic particles which adds most of the mass of an atom as well as the neutron since they have the same mass. Photon, on the other hand, is not one of the subatomic particles.
When a substance is changing state, its temperature remains constant. This is because energy is used to increase/decrease kinetic energy of the molecules of the substance, increasing/decreasing the inter-molecular distance and overcoming the energy bonds present between the molecules. Therefore, no energy is used to raise the temperature of the substance and therefore it remains constant
Answer:
.
Explanation:
Acid = solution that split to H+ or H3O+ pH <7
The compound that can't split to H+ doesn't act as acid.
In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. For example, the electron configuration of the neon atom is 1s² 2s² 2p⁶, using the notation explained below.