Answer : The molar mass of the unknown gas will be 79.7 g/mol
Explanation : To solve this question we can use graham's law;
Now we can use nitrogen as the gas number 2, which travels faster than gas 1;
So, 167 / 99 = 1.687 So the nitrogen gas is 1.687 times faster that the unknown gas 1
We can compare the rates of both the gases;
So here, Rate of gas 2 / Rate of gas 1 =
Now, 1.687 = square root [
]
When we square both the sides we get;
2.845 = (molar mass 1) / (28.01 g/mol N2)
On rearranging, we get,
2.845 X (28.01 g/mol N2) = Molar mass 1
So the molar mass of unknown gas will be = 79.7 g/mol
Answer:
a)calculated molarity of NaOH would be lower
b) calculated molarity of NaOH would be lower
c) calculated molarity of NaOH would be lower
d) calculated molarity of NaOH would be unaffected
Explanation:
Let us recall that the reaction of NaOH and HCl is as follows;
NaOH(aq) + HCl(aq) ----> NaCl(aq) + H2O(l)
Since the reaction is 1:1, when the number of moles of HCl reacting with NaOH is low due to dilution, the calculated molarity of NaOH also becomes less than it's accurate value.
When 40mL of water is added to the titration flask rather than 25ml of water, the acid is more dilute hence less number of moles of acid than necessary reacts with the base thereby yielding a less than accurate value of the molarity of NaOH.
If the burette wet with water is not rinsed with NaOH solution, the concentration of the NaOH in the burette decreases due to dilution with water and a less than accuracy value is calculated for the molarity of NaOH.
If five drops of phenolphthalein is used instead of one or two drops, there is no qualms since enough phenolphthalein may be added to ensure that a sharp end point is obtained.
Clean? I’m pretty sure not sure what it means but.
Answer:
el volumen es igual a masa decidida por densidad