Answer: The concentration of hydrogen ions for this solution is
.
Explanation:
Given: pOH = 11.30
The relation between pH and pOH is as follows.
pH + pOH = 14
pH + 11.30 = 14
pH = 14 - 11.30
= 2.7
Also, pH is the negative logarithm of concentration of hydrogen ions.
![pH = - log [H^{+}]](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%20%5BH%5E%7B%2B%7D%5D)
Substitute the values into above formula as follows.
![pH = -log [H^{+}]\\2.7 = -log [H^{+}]\\conc. of H^{+} = 1.99 \times 10^{-3}](https://tex.z-dn.net/?f=pH%20%3D%20-log%20%5BH%5E%7B%2B%7D%5D%5C%5C2.7%20%3D%20-log%20%5BH%5E%7B%2B%7D%5D%5C%5Cconc.%20of%20H%5E%7B%2B%7D%20%3D%201.99%20%5Ctimes%2010%5E%7B-3%7D)
Thus, we can conclude that the concentration of hydrogen ions for this solution is
.
Answer: 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^4
Explanation:
I suggest looking at the electron configuration chart, it has really helped me a lot :)
It is either mass or volume
Answer:
See explanation
Explanation:
A reaction in which heat and light are produced is a combustion reaction. Combustion is said to have occurred when a substance is burnt in oxygen.
The balanced equation of the reaction is;
4Li(s) + O2(g) ------->2Li2O(s)
This reaction is exothermic because heat was produced. The reaction has a low activation energy as the metal easily burst into flames in oxygen. A catalyst is not needed in this reaction because it has a low activation energy.
According to the law of conservation of mass. Atoms are neither created nor destroyed in a chemical reaction. What this means is that in a chemical reaction, the number of atoms of each element on the left hand side must be the same as the same as the number of atoms of the same element on the right hand side.