Answer:
Step-by-step explanation:
(a+b)^2=a^(2)+2ab+b^(2)
(a-b)^2=a^(2)-2ab+b^(2)
13)
(x+2)^(2)-(x-1)^2
x^(2)+4x+4-(x^(2)-2x+1)
x^(2)+4x+4-x^(2)+2x-1
6x+3
15)
(x+5)^(2)-(x+1)^2
x^(2)+10x+25-(x^(2)+2x+1)
x^(2)+10x+25-x^(2)-2x-1
8x+24
Step-by-step explanation:
Given,
Perimeter of the rectangle = 200cm
Breadth of the rectangle = 10 cm
Therefore, by the problem
=> 2(l+b) = 200cm
=> 2(l + 10) = 200cm

=> l + 10 = 100
=> l = 100 - 10
=> l = 90
<u>Hence, required length othe rectangle is 90 cm (Ans)</u>
AL≈125.66<span><span><span>r-Radius</span><span>h-Height</span></span></span>
Hey there :)
( a - b )( a² + ab + b² )
Let us distribute ( a - b ) into the other
a ( a² ) + a ( ab ) + a ( b² ) - b ( a² ) - b ( ab ) - b ( b² )
a³ + a²b + ab² - a²b - ab² - b³
We can further simplify
a²b - ab² = 0
ab² - ab² = 0
a³ - b³You can see in the picture which I have attached. It is the 8th formula