Since they are similar, you need to find the ratio of similarity (I made up the term, there is probably a correct one that I can’t remember).
If you divide 16/40, you’ll find that that ratio is 2.5. So then you just multiply 16 x 2.5. You’ll get 18.
18 is the length of the top of the trapezoid.
You set 18=2x+4 and solve it algebraically. Subtract 4 from both sides.
14=2x
Divide by 2 and x=7
(You can also check that the ratio is right by 16/18 is the same decimal value as 40/45. You’ll get .88888...)
Negative 1 / Square Root of 2
(5x + 3)(5x – 3)
(7x + 4)(7x + 4)
(x – 9)(x – 9)
(–3x – 6)(–3x + 6)
![\bf f(x)=x+3x^{\frac{2}{3}}\implies \cfrac{dy}{dx}=1+3\left(\frac{2}{3}x^{-\frac{1}{3}} \right)\implies \cfrac{dy}{dx}=1+\cfrac{2}{\sqrt[3]{x}} \\\\\\ \cfrac{dy}{dx}=\cfrac{\sqrt[3]{x}+2}{\sqrt[3]{x}}\implies 0=\cfrac{\sqrt[3]{x}+2}{\sqrt[3]{x}}\implies 0=\sqrt[3]{x}+2\implies -2=\sqrt[3]{x} \\\\\\ (-2)^3=x\implies \boxed{-8=x}\\\\ -------------------------------\\\\ 0=\sqrt[3]{x}\implies \boxed{0=x}](https://tex.z-dn.net/?f=%5Cbf%20f%28x%29%3Dx%2B3x%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%5Cimplies%20%5Ccfrac%7Bdy%7D%7Bdx%7D%3D1%2B3%5Cleft%28%5Cfrac%7B2%7D%7B3%7Dx%5E%7B-%5Cfrac%7B1%7D%7B3%7D%7D%20%20%5Cright%29%5Cimplies%20%5Ccfrac%7Bdy%7D%7Bdx%7D%3D1%2B%5Ccfrac%7B2%7D%7B%5Csqrt%5B3%5D%7Bx%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7Bdy%7D%7Bdx%7D%3D%5Ccfrac%7B%5Csqrt%5B3%5D%7Bx%7D%2B2%7D%7B%5Csqrt%5B3%5D%7Bx%7D%7D%5Cimplies%200%3D%5Ccfrac%7B%5Csqrt%5B3%5D%7Bx%7D%2B2%7D%7B%5Csqrt%5B3%5D%7Bx%7D%7D%5Cimplies%200%3D%5Csqrt%5B3%5D%7Bx%7D%2B2%5Cimplies%20-2%3D%5Csqrt%5B3%5D%7Bx%7D%0A%5C%5C%5C%5C%5C%5C%0A%28-2%29%5E3%3Dx%5Cimplies%20%5Cboxed%7B-8%3Dx%7D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0A0%3D%5Csqrt%5B3%5D%7Bx%7D%5Cimplies%20%5Cboxed%7B0%3Dx%7D)
now, f(0) = 0, and f(-8) is an imaginary value or no real value.
now, f(-10) will also give us an imaginary value
and f(1) = 4
so, doing a first-derivative test on 0, is imaginary to the left and positive on the right, and before and after 1, is positive as well, so f(x) is going up on those intervals.
however, f(0) is 0 and f(1) is higher up, so the absolute maximum will have to be f(1), and we can use f(0) as a minimum, and since it's the only one, the absolute minimum.
the other two, the endpoint of -10 and the critical point of -8, do not yield any values for f(x).