Artificial Selection.
Natural selection progresses slowly & would take generations to complete while artificial selection may complete within days or weeks. This is because Natural selection is not as controlled as artificial selection.
Answer:
may be the answer is A or D
Answer:
the year 1812 Gottlieb Sigismund Kirchhoff was investigating the procedure of converting starch into glucose. In his experiment he also enlightens the application of these biomolecules as catalyst [3]. In 1833, French chemist Anselme Payen discovered the first enzyme, diastase [4
Explanation:
by anselem payen
Decomposers can recycle dead plants and animals into chemical nutrients such as carbon and nitrogen that are released back into the soil, air and water as food for living plants and animals. So, decomposers can recycle dead plants and animals and help keep the flow of nutrients available in the environment
The Avery–MacLeod–McCarty experiment<span> was an experimental demonstration, reported in 1944 by </span>Oswald Avery<span>, </span>Colin MacLeod<span>, and </span>Maclyn McCarty<span>, that </span>DNA<span> is the substance that causes </span>bacterial transformation<span>, in an era when it had been widely believed that it was </span>proteins<span> that served the function of carrying genetic information (with the very word </span>protein<span> itself coined to indicate a belief that its function was </span>primary<span>).
It was the culmination of research in the 1930s and early 20th Century at the </span>Rockefeller Institute for Medical Research<span> to purify and characterize the "transforming principle" responsible for the transformation phenomenon first described in </span>Griffith's experiment<span> of 1928: killed </span>Streptococcus pneumoniae<span> of the </span>virulent<span> strain type III-S, when injected along with living but non-virulent type II-R pneumococci, resulted in a deadly infection of type III-S pneumococci.
In their paper "</span>Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III<span>", published in the February 1944 issue of the </span>Journal of Experimental Medicine<span>, Avery and his colleagues suggest that DNA, rather than protein as widely believed at the time, may be the hereditary material of bacteria, and could be analogous to </span>genes<span> and/or </span>viruses<span> in higher organisms.</span>