Answer:
No, the on-time rate of 74% is not correct.
Solution:
As per the question:
Sample size, n = 60
The proportion of the population, P' = 74% = 0.74
q' = 1 - 0.74 = 0.26
We need to find the probability that out of 60 trains, 38 or lesser trains arrive on time.
Now,
The proportion of the given sample, p = 
Therefore, the probability is given by:
![P(p\leq 0.634) = [\frac{p - P'}{\sqrt{\frac{P'q'}{n}}}]\leq [\frac{0.634 - 0.74}{\sqrt{\frac{0.74\times 0.26}{60}}}]](https://tex.z-dn.net/?f=P%28p%5Cleq%200.634%29%20%3D%20%5B%5Cfrac%7Bp%20-%20P%27%7D%7B%5Csqrt%7B%5Cfrac%7BP%27q%27%7D%7Bn%7D%7D%7D%5D%5Cleq%20%5B%5Cfrac%7B0.634%20-%200.74%7D%7B%5Csqrt%7B%5Cfrac%7B0.74%5Ctimes%200.26%7D%7B60%7D%7D%7D%5D)
P![(p\leq 0.634) = P[z\leq -1.87188]](https://tex.z-dn.net/?f=%28p%5Cleq%200.634%29%20%3D%20P%5Bz%5Cleq%20-1.87188%5D)
P![(p\leq 0.634) = P[z\leq -1.87] = 0.0298](https://tex.z-dn.net/?f=%28p%5Cleq%200.634%29%20%3D%20P%5Bz%5Cleq%20-1.87%5D%20%3D%200.0298)
Therefore, Probability of the 38 or lesser trains out of 60 trains to be on time is 0.0298 or 2.98 %
Thus the on-time rate of 74% is incorrect.
Answer:
Option A.
f(x) = -4*sin((1/3)*t + (π/6)) + 3
Step-by-step explanation:
We can easily solve this problem by using a graphing calculator or plotting tool.
The function is
f(t) = a*sin (b*t +c) + d
Please, see attached picture below.
By looking at the picture with all the possible cases, we can tell that the correct option is A.
The function has a period of T = 6π
Max . Amplitude = 7
Min . Amplitude = -1
Answer:
2
Step-by-step explanation:
(,)=?
(,)=(5,2)
=5!(2!(5−2)!)
=5!2!×3!
= 10