<u>Answer:</u> The activation energy of the reaction is 124.6 kJ/mol
<u>Explanation:</u>
To calculate activation energy of the reaction, we use Arrhenius equation, which is:
![\ln(\frac{K_{79^oC}}{K_{26^oC}})=\frac{E_a}{R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BK_%7B79%5EoC%7D%7D%7BK_%7B26%5EoC%7D%7D%29%3D%5Cfrac%7BE_a%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= equilibrium constant at 79°C = 
= equilibrium constant at 26°C = 
= Activation energy of the reaction = ?
R = Gas constant = 8.314 J/mol K
= initial temperature = ![26^oC=[26+273]K=299K](https://tex.z-dn.net/?f=26%5EoC%3D%5B26%2B273%5DK%3D299K)
= final temperature = ![79^oC=[79+273]K=352K](https://tex.z-dn.net/?f=79%5EoC%3D%5B79%2B273%5DK%3D352K)
Putting values in above equation, we get:
![\ln(\frac{0.394}{2.08\times 10^{-4}})=\frac{E_a}{8.314J/mol.K}[\frac{1}{299}-\frac{1}{352}]\\\\E_a=124595J/mol=124.6kJ/mol](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7B0.394%7D%7B2.08%5Ctimes%2010%5E%7B-4%7D%7D%29%3D%5Cfrac%7BE_a%7D%7B8.314J%2Fmol.K%7D%5B%5Cfrac%7B1%7D%7B299%7D-%5Cfrac%7B1%7D%7B352%7D%5D%5C%5C%5C%5CE_a%3D124595J%2Fmol%3D124.6kJ%2Fmol)
Hence, the activation energy of the reaction is 124.6 kJ/mol
Of the following, which is most likely to result after a farmer sprays his crops with pesticides?D. A neighbor’s well tests positive for pesticides.
Carbon dioxide is a colorless, odorless gas. Why is it considered a pollutant?
A. It gets into natural waters and kills fish.
The answer to this question is 2 and 3
Street: 1. Cars 2. People 3. Wind in the trees 4. Birds 5. Car horn
School: 1. School bell 2. Students laughing 3. Teacher talking 4. Footsteps 5. Lockers
Church: 1. Priest talking 2. People talking 3. Church music 4. Kids crying 5. Benches creaking
All you need to do is change 5% into a decimal which would be 5/100 = .05
then multiply the decimal by the total volume to get the amount of active ingredients in ml
.05 * 56ml = 2.8 ml of active ingredient.
Hope that helps!