The maximum height at which nitrogen molecule will go before coming to rest is 14 kilometers.
Given:
The nitrogen gas molecule with a temperature of 330 Kelvins is released from Earth's surface to travel upward.
To find:
The maximum height of a nitrogen molecule when released from the Earth's surface before coming to rest.
Solution:
- The maximum height attained by nitrogen gas molecule = h
- The temperature of nitrogen gas particle = T = 330 K
The average kinetic energy of the gas particles is given by:

The nitrogen molecule at its maximum height will have zero kinetic energy as all the kinetic energy will get converted into potential energy
- The potential energy at height h =

- Molar mass of nitrogen gas = 28.0134 g/mol
- Mass of nitrogen gas molecule = m

- The acceleration due to gravity = g = 9.8 m/s^2
- The maximum height attained by nitrogen gas molecule = h
- The potential energy is given by:


The maximum height at which nitrogen molecule will go before coming to rest is 14 kilometers.
Learn more about the average kinetic energy of gas particles here:
brainly.com/question/16615446?referrer=searchResults
brainly.com/question/6329137?referrer=searchResults
<span>There are divergent boundaries where the plates are moving away from each other, causing magma to rise up. The boiling lava is almost immediately cooled and forms new sea floor crust.</span>
Answer:
When observing how thallium reacts with the air of the earth's atmosphere, its hardness or resistance resembled sodium, it was not investigated further to classify it correctly
Explanation:
Now it is known that they contain different numbers of valence electrons and that thallium is a heavy metal like lead and that they have similar characteristics except for their melting point where thallium is higher.
Protons identity the element because the number of protons gives us the atomic number of each element