Answer:
Diction
Explanation:
is defined as the choice of words suited to the type of writing. hope this helps you :)
Answer:
609547.12 Pa ≈ 6.10×10^5 Pa
Explanation:
Step 1:
Data obtained from the question. This include the following:
Force (F) = 49.8 N
Radius (r) = 0.00510 m
Pressure (P) =..?
Step 2:
Determination of the area of the head of the nail.
The head of a nail is circular in nature. Therefore, the area is given by:
Area (A) = πr²
With the above formula we can obtain the area as follow:
Radius (r) = 0.00510 m
Area (A) =?
A = πr²
A = π x (0.00510)²
A = 8.17×10^-5 m²
Therefore the area of the head of the nail is 8.17×10^-5 m²
Step 3:
Determination of the pressure exerted by the hammer.
This is illustrated below:
Force (F) = 49.8 N
Area (A) = 8.17×10^-5 m²
Pressure (P) =..?
Pressure (P) = Force (F) /Area (A)
P = F/A
P = 49.8/8.17×10^-5
P = 609547.12 N/m²
Now, we shall convert 609547.12 N/m² to Pa.
1 N/m² = 1 Pa
Therefore, 609547.12 N/m² = 609547.12 Pa.
Therefore, the pressure exerted by the hammer on the nail is 609547.12 Pa or 6.10×10^5 Pa
Answer:
Entropy is increasing. Entropy is decreasing.
Explanation:
The Entropy doesn't change.
We can use the law of conservation of energy to solve the problem.
The total mechanical energy of the system at any moment of the motion is:

where U is the potential energy and K the kinetic energy.
At the beginning of the motion, the ball starts from the ground so its altitude is h=0 and therefore its potential energy U is zero. So, the mechanical energy is just kinetic energy:

When the ball reaches the maximum altitude of its flight, it starts to go down again, so its speed at that moment is zero: v=0. So, its kinetic energy at the top is zero. So the total mechanical energy is just potential energy:

But the mechanical energy must be conserved, Ef=Ei, so we have

and so, the potential energy at the top of the flight is
A. is a neutral substance a pH of 7 describes something of neutral pH where anything less than 7 is an acid and higher is a base