Answer:
27
Step-by-step explanation:
Answer:
Since Darcie wants to crochet a minimum of 3 blankets and she crochets at a rate of 1/5 blanket per day, we can determine how many days she will need to crochet a minimum of 3 blankets following the next steps:
- Finding the number of days needed to crochet one (1) blanket:
\begin{gathered}1=\frac{1}{5}Crochet(Day)\\Crochet(Day)=5*1=5\end{gathered}
1=
5
1
Crochet(Day)
Crochet(Day)=5∗1=5
So, she can crochet 1 blanket every 5 days.
- Finding the number of days needed to crochet three (3) blankets:
If she needs 5 days to crochet 1 blanket, to crochet 3 blankets she will need 15 days because:
\begin{gathered}DaysNeeded=\frac{NumberOfBlankets}{Rate}\\\\DaysNeeded=\frac{3}{\frac{1}{5}}=3*5=15\end{gathered}
DaysNeeded=
Rate
NumberOfBlankets
DaysNeeded=
5
1
3
=3∗5=15
- Writing the inequality
If she has 60 days to crochet a minimum of 3 blankets but she can complete it in 15 days, she can skip crocheting 45 days because:
AvailableDays=60-RequiredDaysAvailableDays=60−RequiredDays
AvailableDays=60-15=45DaysAvailableDays=60−15=45Days
So, the inequality will be:
s\leq 45s≤45
The inequality means that she can skip crocheting a maximum of 45 days since she needs 15 days to crochet a minimum of 3 blankets.
Have a nice day!
Answer:
6s
Step-by-step explanation:
1. 2s-(-4s)
2. 2s+4s
3. 6s
Answer:
10:00
Step-by-step explanation:
Because I've gone ahead with trying to parameterize
directly and learned the hard way that the resulting integral is large and annoying to work with, I'll propose a less direct approach.
Rather than compute the surface integral over
straight away, let's close off the hemisphere with the disk
of radius 9 centered at the origin and coincident with the plane
. Then by the divergence theorem, since the region
is closed, we have

where
is the interior of
.
has divergence

so the flux over the closed region is

The total flux over the closed surface is equal to the flux over its component surfaces, so we have


Parameterize
by

with
and
. Take the normal vector to
to be

Then the flux of
across
is



