<span>System 1 and system 2, because the second equation in system 2 is obtained by adding the first equation in system 1 to two times the second equation in system 1
This is the correct answer because not only is it true but it also follows the property of solving systems of equations with adding the equations. To prove that it is true:
2nd equation in system #2 = 1st equation in system #1 + 2(2nd equation in system #1)
</span>10x − 7y = 18 == 4x − 5y = 2 + 2(<span>3x − y = 8)
10x - 7y = 18 == 4x - 5y = 2 + 6x - 2y = 16
10x = 7y = 18 == 10x - 7y = 18</span>
Answer:
2/4
Step-by-step explanation:
Answer:
The third score must be larger than or equal to 72, and smaller than or equal 87
Step-by-step explanation:
Let's name "x" the third quiz score for which we need to find the values to get the desired average.
Recalling that average grade for three quizzes is the addition of the values on each, divided by the number of quizzes (3), we have the following expression for the average:

SInce we want this average to be in between 80 and 85, we write the following double inequality using the symbols that include equal sign since we are requested the average to be between 80 and 85 inclusive:

Now we can proceed to solve for the unknown "x" treating each inaquality at a time:

This inequality tells us that the score in the third quiz must be larger than or equal to 72.
Now we study the second inequality to find the other restriction on "x":

This ine
quality tells us that the score in the third test must be smaller than or equal to 87 to reach the goal.
Therefore to obtained the requested condition for the average, the third score must be larger than or equal to 72, and smaller than or equal 87:
Answer:
I would say 2,3,4.
Step-by-step explanation:
I hope this helps and i hope this is the right answer