1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
enot [183]
3 years ago
7

Show work explain with formulas.

Mathematics
2 answers:
soldier1979 [14.2K]3 years ago
8 0

Answer:

\large\boxed{1.\ a_{44}=481,\ \sum\limits_{n=1}^\infty(11n-3),\ \text{the sum not exist}}

1. a

44

=481,

n=1

∑

∞

(11n−3), the sum not exist

\large\boxed{3.\ \sum\limits_{n=1}^{47}(9n+16)=10,904}

3.

n=1

∑

47

(9n+16)=10,904

\large\boxed{4.\ \sum\limits_{n=1}^\infty\bigg(6(2^n)\bigg),\ \text{the sum not exist}}

4.

n=1

∑

∞

(6(2

n

)), the sum not exist

Step-by-step explanation:

\begin{lgathered}1.\\8+19+30+41+...\\\\19-8=11\\30-19=11\\41-30=11\\\\\text{It's an arithmetic series.}\ a_1=8,\ d=11.\\\\\text{The formula for the n-th term of an arithmetic sequence:}\\\\a_n=a_1+(n-1)d\\\\\text{Substitute:}\\\\a_n=8+(n-1)(11)\qquad\text{use the distributive property}\ a(b-c)=ab-ac\\a_n=8+11n-11\\\boxed{a_n=11n-3}\\\\\text{Calculate the 44th term. Put n = 44 to the formula:}\\\\a_{44}=(11)(44)-3=484-3=481\end{lgathered}

1.

8+19+30+41+...

19−8=11

30−19=11

41−30=11

It’s an arithmetic series. a

1

=8, d=11.

The formula for the n-th term of an arithmetic sequence:

a

n

=a

1

+(n−1)d

Substitute:

a

n

=8+(n−1)(11)use the distributive property a(b−c)=ab−ac

a

n

=8+11n−11

a

n

=11n−3

Calculate the 44th term. Put n = 44 to the formula:

a

44

=(11)(44)−3=484−3=481

\begin{lgathered}\text{The summation notation:}\\\\\sum\limits_{n=1}^\infty(11n-3)\\\\\text{The sum not exist, because}\ d>1,\ \text{therefore}\ 11n-3\rightarrow\infty.\end{lgathered}

The summation notation:

n=1

∑

∞

(11n−3)

The sum not exist, because d>1, therefore 11n−3→∞.

=======================================================

\begin{lgathered}3.\\25+34+43+52+...+436\\\\34-25=9\\43-34=9\\52-43=9\\\\\text{It's an arithmetic series.}\ a_1=25,\ d=9.\\\\\text{The formula for the n-th term of an arithmetic sequence:}\\\\a_n=a_1+(n-1)d\\\\\text{Substitute:}\\\\a_n=25+(n-1)(9)\\a_n=25+9n-9\\a_n=9n+16\\\\\text{Calculate which the term of arithmetic series is the number 439.}\\\text{Put}\ a_n=439:\\\\9n+16=439\qquad\text{subtract 16 from both sides}\\9n=423\qquad\text{divide both sides by 9}\\n=47\end{lgathered}

3.

25+34+43+52+...+436

34−25=9

43−34=9

52−43=9

It’s an arithmetic series. a

1

=25, d=9.

The formula for the n-th term of an arithmetic sequence:

a

n

=a

1

+(n−1)d

Substitute:

a

n

=25+(n−1)(9)

a

n

=25+9n−9

a

n

=9n+16

Calculate which the term of arithmetic series is the number 439.

Put a

n

=439:

9n+16=439subtract 16 from both sides

9n=423divide both sides by 9

n=47

\begin{lgathered}\text{Therefore we have the series in summation notation:}\\\\\sum\limits_{n=1}^{47}(9n+16)\\\\\text{For calculation of the sum we use the formula of a sum of terms}\\\text{of an arithmetic sequence:}\\\\S_n=\dfrac{a_1+a_n}{2}\cdot n\\\\\text{Substitute}\ n=47,\ a_1=25,\ a_{47}=439:\\\\S_{47}=\dfrac{25+439}{2}\cdot47=\dfrac{464}{2}\cdot47=232\cdot47=10904\\\\\sum\limits_{n=1}^{47}(9n+16)=10,904\end{lgathered}

Therefore we have the series in summation notation:

n=1

∑

47

(9n+16)

For calculation of the sum we use the formula of a sum of terms

of an arithmetic sequence:

S

n

=

2

a

1

+a

n

⋅n

Substitute n=47, a

1

=25, a

47

=439:

S

47

=

2

25+439

⋅47=

2

464

⋅47=232⋅47=10904

n=1

∑

47

(9n+16)=10,904

=======================================================

\begin{lgathered}4.\\12+24+48+...\\\\24:12=2\\48:24=2\\\\\text{It's\ a\ geometric series}\ a_1=12,\ r=2.\\\\\text{The formula for the n-th term of a geometic sequence:}\\\\a_n=a_1r^{n-1}\\\\\text{Substitute:}\\\\a_n=(12)(2^{n-1})\qquad\text{use}\ \dfrac{a^n}{a^m}=a^{n-m}\\\\a_n=(12)\left(\dfrac{2^n}{2^1}\right)\\\\a_n=(6)(2^n)\\\\\text{The summation notation:}\\\\\sum\limits_{n=1}^\infty\bigg(6(2^n)\bigg)\\\\\text{The sum not exist, because}\ r>1,\ \text{therefore}\ 6(2^n)\to\infty\end{lgathered}

4.

12+24+48+...

24:12=2

48:24=2

It’s a geometric series a

1

=12, r=2.

The formula for the n-th term of a geometic sequence:

a

n

=a

1

r

n−1

Substitute:

a

n

=(12)(2

n−1

)use

a

m

a

n

=a

n−m

a

n

=(12)(

2

1

2

n

)

a

n

=(6)(2

n

)

The summation notation:

n=1

∑

∞

(6(2

n

))

The sum not exist, because r>1, therefore 6(2

n

)→∞

Sedaia [141]3 years ago
6 0

Answer:

\large\boxed{1.\ a_{44}=481,\ \sum\limits_{n=1}^\infty(11n-3),\ \text{the sum not exist}}

\large\boxed{3.\ \sum\limits_{n=1}^{47}(9n+16)=10,904}

\large\boxed{4.\ \sum\limits_{n=1}^\infty\bigg(6(2^n)\bigg),\ \text{the sum not exist}}

Step-by-step explanation:

1.\\8+19+30+41+...\\\\19-8=11\\30-19=11\\41-30=11\\\\\text{It's an arithmetic series.}\ a_1=8,\ d=11.\\\\\text{The formula for the n-th term of an arithmetic sequence:}\\\\a_n=a_1+(n-1)d\\\\\text{Substitute:}\\\\a_n=8+(n-1)(11)\qquad\text{use the distributive property}\ a(b-c)=ab-ac\\a_n=8+11n-11\\\boxed{a_n=11n-3}\\\\\text{Calculate the 44th term. Put n = 44 to the formula:}\\\\a_{44}=(11)(44)-3=484-3=481

\text{The summation notation:}\\\\\sum\limits_{n=1}^\infty(11n-3)\\\\\text{The sum not exist, because}\ d>1,\ \text{therefore}\ 11n-3\rightarrow\infty.

=======================================================

3.\\25+34+43+52+...+436\\\\34-25=9\\43-34=9\\52-43=9\\\\\text{It's an arithmetic series.}\ a_1=25,\ d=9.\\\\\text{The formula for the n-th term of an arithmetic sequence:}\\\\a_n=a_1+(n-1)d\\\\\text{Substitute:}\\\\a_n=25+(n-1)(9)\\a_n=25+9n-9\\a_n=9n+16\\\\\text{Calculate which the term of arithmetic series is the number 439.}\\\text{Put}\ a_n=439:\\\\9n+16=439\qquad\text{subtract 16 from both sides}\\9n=423\qquad\text{divide both sides by 9}\\n=47

\text{Therefore we have the series in summation notation:}\\\\\sum\limits_{n=1}^{47}(9n+16)\\\\\text{For calculation of the sum we use the formula of a sum of terms}\\\text{of an arithmetic sequence:}\\\\S_n=\dfrac{a_1+a_n}{2}\cdot n\\\\\text{Substitute}\ n=47,\ a_1=25,\ a_{47}=439:\\\\S_{47}=\dfrac{25+439}{2}\cdot47=\dfrac{464}{2}\cdot47=232\cdot47=10904\\\\\sum\limits_{n=1}^{47}(9n+16)=10,904

=======================================================

4.\\12+24+48+...\\\\24:12=2\\48:24=2\\\\\text{It's\ a\ geometric series}\ a_1=12,\ r=2.\\\\\text{The formula for the n-th term of a geometic sequence:}\\\\a_n=a_1r^{n-1}\\\\\text{Substitute:}\\\\a_n=(12)(2^{n-1})\qquad\text{use}\ \dfrac{a^n}{a^m}=a^{n-m}\\\\a_n=(12)\left(\dfrac{2^n}{2^1}\right)\\\\a_n=(6)(2^n)\\\\\text{The summation notation:}\\\\\sum\limits_{n=1}^\infty\bigg(6(2^n)\bigg)\\\\\text{The sum not exist, because}\ r>1,\ \text{therefore}\ 6(2^n)\to\infty

You might be interested in
Solve (3)/(?)=(6)/(8)
lbvjy [14]

Answer:

4

Step-by-step explanation:

3/4 = 6/8

5 0
2 years ago
Read 2 more answers
Find an ordered pair (x,y) that is a solution to the equation. 3x-y=8
allochka39001 [22]

Answer:

(2,-2)

Step-by-step explanation:

3x-y =3(2) -(-2)= 6 +2 = 8

7 0
2 years ago
A Family travels at a constant rate and drove 420 miles in 7 hours.If they drive at the same speed ,How many miles will they dri
Mazyrski [523]

Answer:

240 miles

Step-by-step explanation:

Step 1

We find the constant rate at which the family travels

Speed(Rate) = Distance/Time

A Family travels at a constant rate and drove 420 miles in 7 hours.

Speed(Rate) = 420 miles/7 hours

= 60 miles per hour

Step 2

If they drive at the same speed ,How many miles will they drive in the next four hours.?

We are to finally calculate the distance for the next 4 hours

Distance = Speed × Time

Speed = 60 miles per hour

Time = 4 hours

Distance = 60 miles per hour × 4 hours

Distance = 240 miles

Therefore, for the next 4 hours the number of miles they would drive is 240 miles

5 0
3 years ago
Help pls i have till 3:15 :(
Nesterboy [21]

Answer:

using V=w x h x l=11·12·3=396

Step-by-step explanation:

396 cm^3

8 0
1 year ago
Read 2 more answers
A large electronic office product contains 2000 electronic components. Assume that the probability that each component operates
KIM [24]

Answer:

The probability is 0.971032

Step-by-step explanation:

The variable that says the number of components that fail during the useful life of the product follows a binomial distribution.

The Binomial distribution apply when we have n identical and independent events with a probability p of success and a probability 1-p of not success. Then, the probability that x of the n events are success is given by:

P(x)=\frac{n!}{x!(n-x)!}*p^{x}*(1-p)^{n-x}

In this case, we have 2000 electronics components with a probability 0.005 of fail during the useful life of the product and a probability 0.995 that each component operates without failure during the useful life of the product. Then, the probability that x components of the 2000 fail is:

P(x)=\frac{2000!}{x!(2000-x)!}*0.005^{x}*(0.995)^{2000-x}     (eq. 1)

So, the probability that 5 or more of the original 2000 components fail during the useful life of the product is:

P(x ≥ 5) = P(5) + P(6) + ... + P(1999) + P(2000)

We can also calculated that as:

P(x ≥ 5) = 1 - P(x ≤ 4)

Where P(x ≤ 4) = P(0) + P(1) + P(2) + P(3) + P(4)

Then, if we calculate every probability using eq. 1, we get:

P(x ≤ 4) = 0.000044 + 0.000445 + 0.002235 + 0.007479 + 0.018765

P(x ≤ 4) = 0.028968

Finally, P(x ≥ 5) is:

P(x ≥ 5) = 1 - 0.028968

P(x ≥ 5) = 0.971032

3 0
2 years ago
Other questions:
  • 1. A room is 5 m by 3m. What is the area of the room?​
    11·2 answers
  • Expanding log functions<br> ㏒3 (3(x+1)(x+2))
    14·1 answer
  • Write an expression that is equal to 3x2 1/4
    7·1 answer
  • John runs a computer software store. Yesterday he counted 127 people who walked by his store, 58 of whom came into the store. Of
    11·2 answers
  • If one store is selling 3/4 of a bushel of apples for $9, and another stir is selling 2/3 of a bushel of apples for $9, which st
    14·1 answer
  • Def is a right triangle if feel equals 24 and de equals 7 find df
    5·1 answer
  • What is 5.2E11 in scientific notation
    13·2 answers
  • What is the solution to the equation 2(4-8x)+5(2x-3)=20-5x
    9·2 answers
  • (3 + 4i) + (5 − 2i) (2 points) −2 + 6i 2 − 2i 7 + 3i 8 + 2i
    9·1 answer
  • 8x=24<br> Solve the equation for x
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!