1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
enot [183]
4 years ago
7

Show work explain with formulas.

Mathematics
2 answers:
soldier1979 [14.2K]4 years ago
8 0

Answer:

\large\boxed{1.\ a_{44}=481,\ \sum\limits_{n=1}^\infty(11n-3),\ \text{the sum not exist}}

1. a

44

=481,

n=1

∑

∞

(11n−3), the sum not exist

\large\boxed{3.\ \sum\limits_{n=1}^{47}(9n+16)=10,904}

3.

n=1

∑

47

(9n+16)=10,904

\large\boxed{4.\ \sum\limits_{n=1}^\infty\bigg(6(2^n)\bigg),\ \text{the sum not exist}}

4.

n=1

∑

∞

(6(2

n

)), the sum not exist

Step-by-step explanation:

\begin{lgathered}1.\\8+19+30+41+...\\\\19-8=11\\30-19=11\\41-30=11\\\\\text{It's an arithmetic series.}\ a_1=8,\ d=11.\\\\\text{The formula for the n-th term of an arithmetic sequence:}\\\\a_n=a_1+(n-1)d\\\\\text{Substitute:}\\\\a_n=8+(n-1)(11)\qquad\text{use the distributive property}\ a(b-c)=ab-ac\\a_n=8+11n-11\\\boxed{a_n=11n-3}\\\\\text{Calculate the 44th term. Put n = 44 to the formula:}\\\\a_{44}=(11)(44)-3=484-3=481\end{lgathered}

1.

8+19+30+41+...

19−8=11

30−19=11

41−30=11

It’s an arithmetic series. a

1

=8, d=11.

The formula for the n-th term of an arithmetic sequence:

a

n

=a

1

+(n−1)d

Substitute:

a

n

=8+(n−1)(11)use the distributive property a(b−c)=ab−ac

a

n

=8+11n−11

a

n

=11n−3

Calculate the 44th term. Put n = 44 to the formula:

a

44

=(11)(44)−3=484−3=481

\begin{lgathered}\text{The summation notation:}\\\\\sum\limits_{n=1}^\infty(11n-3)\\\\\text{The sum not exist, because}\ d>1,\ \text{therefore}\ 11n-3\rightarrow\infty.\end{lgathered}

The summation notation:

n=1

∑

∞

(11n−3)

The sum not exist, because d>1, therefore 11n−3→∞.

=======================================================

\begin{lgathered}3.\\25+34+43+52+...+436\\\\34-25=9\\43-34=9\\52-43=9\\\\\text{It's an arithmetic series.}\ a_1=25,\ d=9.\\\\\text{The formula for the n-th term of an arithmetic sequence:}\\\\a_n=a_1+(n-1)d\\\\\text{Substitute:}\\\\a_n=25+(n-1)(9)\\a_n=25+9n-9\\a_n=9n+16\\\\\text{Calculate which the term of arithmetic series is the number 439.}\\\text{Put}\ a_n=439:\\\\9n+16=439\qquad\text{subtract 16 from both sides}\\9n=423\qquad\text{divide both sides by 9}\\n=47\end{lgathered}

3.

25+34+43+52+...+436

34−25=9

43−34=9

52−43=9

It’s an arithmetic series. a

1

=25, d=9.

The formula for the n-th term of an arithmetic sequence:

a

n

=a

1

+(n−1)d

Substitute:

a

n

=25+(n−1)(9)

a

n

=25+9n−9

a

n

=9n+16

Calculate which the term of arithmetic series is the number 439.

Put a

n

=439:

9n+16=439subtract 16 from both sides

9n=423divide both sides by 9

n=47

\begin{lgathered}\text{Therefore we have the series in summation notation:}\\\\\sum\limits_{n=1}^{47}(9n+16)\\\\\text{For calculation of the sum we use the formula of a sum of terms}\\\text{of an arithmetic sequence:}\\\\S_n=\dfrac{a_1+a_n}{2}\cdot n\\\\\text{Substitute}\ n=47,\ a_1=25,\ a_{47}=439:\\\\S_{47}=\dfrac{25+439}{2}\cdot47=\dfrac{464}{2}\cdot47=232\cdot47=10904\\\\\sum\limits_{n=1}^{47}(9n+16)=10,904\end{lgathered}

Therefore we have the series in summation notation:

n=1

∑

47

(9n+16)

For calculation of the sum we use the formula of a sum of terms

of an arithmetic sequence:

S

n

=

2

a

1

+a

n

⋅n

Substitute n=47, a

1

=25, a

47

=439:

S

47

=

2

25+439

⋅47=

2

464

⋅47=232⋅47=10904

n=1

∑

47

(9n+16)=10,904

=======================================================

\begin{lgathered}4.\\12+24+48+...\\\\24:12=2\\48:24=2\\\\\text{It's\ a\ geometric series}\ a_1=12,\ r=2.\\\\\text{The formula for the n-th term of a geometic sequence:}\\\\a_n=a_1r^{n-1}\\\\\text{Substitute:}\\\\a_n=(12)(2^{n-1})\qquad\text{use}\ \dfrac{a^n}{a^m}=a^{n-m}\\\\a_n=(12)\left(\dfrac{2^n}{2^1}\right)\\\\a_n=(6)(2^n)\\\\\text{The summation notation:}\\\\\sum\limits_{n=1}^\infty\bigg(6(2^n)\bigg)\\\\\text{The sum not exist, because}\ r>1,\ \text{therefore}\ 6(2^n)\to\infty\end{lgathered}

4.

12+24+48+...

24:12=2

48:24=2

It’s a geometric series a

1

=12, r=2.

The formula for the n-th term of a geometic sequence:

a

n

=a

1

r

n−1

Substitute:

a

n

=(12)(2

n−1

)use

a

m

a

n

=a

n−m

a

n

=(12)(

2

1

2

n

)

a

n

=(6)(2

n

)

The summation notation:

n=1

∑

∞

(6(2

n

))

The sum not exist, because r>1, therefore 6(2

n

)→∞

Sedaia [141]4 years ago
6 0

Answer:

\large\boxed{1.\ a_{44}=481,\ \sum\limits_{n=1}^\infty(11n-3),\ \text{the sum not exist}}

\large\boxed{3.\ \sum\limits_{n=1}^{47}(9n+16)=10,904}

\large\boxed{4.\ \sum\limits_{n=1}^\infty\bigg(6(2^n)\bigg),\ \text{the sum not exist}}

Step-by-step explanation:

1.\\8+19+30+41+...\\\\19-8=11\\30-19=11\\41-30=11\\\\\text{It's an arithmetic series.}\ a_1=8,\ d=11.\\\\\text{The formula for the n-th term of an arithmetic sequence:}\\\\a_n=a_1+(n-1)d\\\\\text{Substitute:}\\\\a_n=8+(n-1)(11)\qquad\text{use the distributive property}\ a(b-c)=ab-ac\\a_n=8+11n-11\\\boxed{a_n=11n-3}\\\\\text{Calculate the 44th term. Put n = 44 to the formula:}\\\\a_{44}=(11)(44)-3=484-3=481

\text{The summation notation:}\\\\\sum\limits_{n=1}^\infty(11n-3)\\\\\text{The sum not exist, because}\ d>1,\ \text{therefore}\ 11n-3\rightarrow\infty.

=======================================================

3.\\25+34+43+52+...+436\\\\34-25=9\\43-34=9\\52-43=9\\\\\text{It's an arithmetic series.}\ a_1=25,\ d=9.\\\\\text{The formula for the n-th term of an arithmetic sequence:}\\\\a_n=a_1+(n-1)d\\\\\text{Substitute:}\\\\a_n=25+(n-1)(9)\\a_n=25+9n-9\\a_n=9n+16\\\\\text{Calculate which the term of arithmetic series is the number 439.}\\\text{Put}\ a_n=439:\\\\9n+16=439\qquad\text{subtract 16 from both sides}\\9n=423\qquad\text{divide both sides by 9}\\n=47

\text{Therefore we have the series in summation notation:}\\\\\sum\limits_{n=1}^{47}(9n+16)\\\\\text{For calculation of the sum we use the formula of a sum of terms}\\\text{of an arithmetic sequence:}\\\\S_n=\dfrac{a_1+a_n}{2}\cdot n\\\\\text{Substitute}\ n=47,\ a_1=25,\ a_{47}=439:\\\\S_{47}=\dfrac{25+439}{2}\cdot47=\dfrac{464}{2}\cdot47=232\cdot47=10904\\\\\sum\limits_{n=1}^{47}(9n+16)=10,904

=======================================================

4.\\12+24+48+...\\\\24:12=2\\48:24=2\\\\\text{It's\ a\ geometric series}\ a_1=12,\ r=2.\\\\\text{The formula for the n-th term of a geometic sequence:}\\\\a_n=a_1r^{n-1}\\\\\text{Substitute:}\\\\a_n=(12)(2^{n-1})\qquad\text{use}\ \dfrac{a^n}{a^m}=a^{n-m}\\\\a_n=(12)\left(\dfrac{2^n}{2^1}\right)\\\\a_n=(6)(2^n)\\\\\text{The summation notation:}\\\\\sum\limits_{n=1}^\infty\bigg(6(2^n)\bigg)\\\\\text{The sum not exist, because}\ r>1,\ \text{therefore}\ 6(2^n)\to\infty

You might be interested in
Which value of y forms the solution of the system defined by y = 11x + 1 and<br> 11x + 12y = 12?
aliya0001 [1]
Y = 11 x + 1
11 x + 12 y = 12
----------------------
11 x + 12 * ( 11 x + 1 ) = 12
11 x + 132 x + 12 = 12
143 x + 12 - 12 = 12 - 12
143 x = 0
x = 0
y = 11 * 0 + 1
y = 0 + 1
Answer:
y = 1
8 0
3 years ago
Read 2 more answers
Rewrite the expression 18 with an<br> exponent.
fredd [130]
18^4 this is another way to show an exponent
4 0
3 years ago
What is the solution to the expression Negative 2 minus 3 minus (negative 4)?
m_a_m_a [10]

Answer:

negative 1.................

7 0
4 years ago
Read 2 more answers
X-y=-2 <br> 2x+y=8 <br> find the solution:
stira [4]
You may use direct substitution to solve for x and y.
So, x=2 and y=4.
6 0
4 years ago
HELP PLEASE BRAINLIEST TO WHOEVER GETS IT RIGHT.
lisov135 [29]

Answer:

I believe the answer is D; 5/20+(-12/20).

Step-by-step explanation:

1/4-3/5

5/20-12/20

-7/20

5/20+(-12/20)

5/20-12/20

-7/20

Hope this helps! :D

4 0
3 years ago
Other questions:
  • Graph the linear equation 3x - y = 12. Write the equation in slope-intercept form,
    11·1 answer
  • please solve the question and show your work find the missing number in 34x =0 show how u got your answer and write full explana
    7·1 answer
  • Find (f - g)(5) when f(x) = 5x2 + 4 and g(x)=x<br>+3.<br>A) 121<br>B) 131<br>C) -134<br>D) 127<br>​
    15·1 answer
  • Suppose you walk down a school hallway at a rate of 5 ft/s, and you reach your destination in 20 seconds. How do you write a fun
    13·2 answers
  • 2cot^2(x)-7csc(x)+8=0
    5·1 answer
  • Last one ifr today ty !
    15·1 answer
  • aj paid $31.86 for a new basketball. The price he paid included sales tax of 6.25%. Which equation can be used to find the price
    9·1 answer
  • 3 + x = 4 is the same as 4 = 3 + x. This is an example of which algebraic property? a.Distributive Property
    15·2 answers
  • he sum of the first two terms of a G.P is 27 whereas the sum of the second and third term is 54. Find the first term and the com
    11·1 answer
  • HELP PLS I NEED help this is to get my grade up
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!